
Neural Dynamics on Complex Networks

Chengxi Zang, Fei Wang
Department of Healthcare Policy and Research

Weill Cornell Medicine
chz4001@med.cornell.edu, few2001@med.cornell.edu

Abstract

We introduce a deep learning model to learn continuous-time dynamics on complex
networks and infer the semantic labels of nodes in the network at terminal time.
We formulate the problem as an optimal control problem by minimizing a loss
function consisting of a running loss of network dynamics, a terminal loss of
nodes’ labels, and a neural-differential-equation-system constraint. We solve the
problem by a differential deep learning framework: as for the forward process of
the system, rather than forwarding through a discrete number of hidden layers,
we integrate the ordinary differential equation systems on graphs over continuous
time; as for the backward learning process, we learn the optimal control parameters
by back-propagation during solving initial value problem. We validate our model
by learning complex dynamics on various real-world complex networks, and then
apply our model to graph semi-supervised classification tasks. The promising
experimental results demonstrate our model’s capability of jointly capturing the
structure, dynamics and semantics of complex systems.

1 Introduction
Real-world complex systems, such as brain [18], ecological systems [17], gene regulation [2],
economic system [22] and human health [5] etc., are usually modeled as complex networks and
their evolution are driven by some underlying nonlinear dynamics [33]. Revealing such complex
network dynamics is crucial for understanding the complex systems in nature. Effective analytical
tools developed for this goal can further help us predict and control these complex systems.

Although the theory of (nonlinear) dynamics has been widely studied in different fields including
applied math [41, 9], statistical physics [28], engineering [40], ecology [17] and biology [5], these
developed models are typically based on clear knowledge of the network evolution mechanism (which
are thus usually referred as mechanistic models). Given the complexity of the real world, there is
still a large amount of complex networks whose underlying dynamics are unknown yet (e.g., they
can be too complex to be models by explicit mathematical functions). At the same time, massive
data are usually generated during the evolution of these networks. Therefore, modern data-driven
approaches are promising and highly demanding in modeling the unknown dynamics of complex
networks. Two key components for developing a successful data-driven approach for modeling the
dynamics of complex network are 1) the interaction structure of the nodes in the complex networks;
and 2) the rules governing the dynamic change of the nodes’ states in the complex networks.

In this paper we propose a novel “differential" deep learning based approach to learn the continuous-
time dynamics on complex networks [33] and simultaneously infer the unknown semantic labels
of nodes with high-dimensional features [49] at terminal time. We formulate the problem as an
optimal control problem [15] by minimizing the running loss of network dynamics and terminal loss
of semantic labels of nodes. The constraint of this optimization problem is in the form of a neural
differential equation system which enables learning optimal control parameters in a data-driven
manner. One unique design of our framework is that instead of forwarding the flow of information

Preprint. Under review.

ar
X

iv
:s

ub
m

it/
27

91
96

4
 [

cs
.S

I]
 2

 A
ug

 2
01

9

as in conventional neural network learning process through a discrete number of layers [26], we
integrate the neural dynamics on graphs over continuous-time and then learn the differential equation
systems which model the continuous-time network dynamics. This is like a deep neural network
with infinite number of layers [10]. Moreover, our approach also gives the meanings of physical time
and continuous-time network dynamics to the depth and hidden outputs of neural network structure
respectively. In addition, we further enhance our algorithm, called neural dynamics on complex
networks (NDCN), by learning the dynamics in the embedding space of the high-dimensional node
features.

We validate our approach by answering two general questions: 1) Can we learn the continuous-time
dynamics on complex networks? 2) Can we infer the semantic labels of nodes at terminal time stamp?
The experimental results show that our model accurately learns the real-world (linear/nonlinear)
dynamics (e.g., heat diffusion in physical world, mutualistic interaction dynamics in ecology, and
gene regulatory dynamics) on various complex networks. To the best of our knowledge, our learning
framework for complex network dynamics is the first one of its kind. Furthermore, our model learns
the semantic labels of nodes in various real-world network datasets in the setting of graph based
semi-supervised classification [49, 24] with superior performances. Our codes and datasets are
open-sourced at Appendix A.

2 The General framework
We first introduce a differential equation system which models the dynamics on complex networks:

dX(t)

dt
= f

(
X(t), G,W (t), t

)
, (1)

where X(t) ∈ Rn×d represents the state of a dynamic system consisting of n linked nodes at time
t ∈ [0,∞), and each node is characterized by d dimensional features. G = (V, E) is the network
structure capturing how the nodes are linked to each other. W (t) is the parameters controlling how
the system evolves over time. X(0) = X0 is the initial states (node feature values) of this system
at time t = 0. The function f : Rn×d → Rn×d is a function governing the dynamics of the system,
which could be either linear or nonlinear. By convention, we denotes dX(t)

dt = f(X(t), G,W (t), t) as
Ẋ = f(X,G,W, t) for simplicity. In addition, nodes can have various semantic labels Y (X,Θ, t) ∈
{0, 1}n×k at time t, and Θ represents the parameters of this classification function. The problems we
are trying to solve in this paper are:

• How to learn the dynamics ˙X(t) of complex networks from empirical data?
• How to learn the semantic labels of Y (X(t)) at time stamp t = T for each node?

In order to solve these problems, we first formulate them as an optimal control problem so that
the goal becomes to obtain 1) the best control parameters W (t) for differential equation system
Ẋ = f(X,G,W, t) and 2) the best classification parameters Θ for semantic function Y (X(t),Θ)
simultaneously by solving the following optimization problem:

argmin
W (t),Θ(T)

L =

∫ T

0

R
(
X(t), G,W (t), t

)
dt+ S

(
Y (X(T),Θ)

)
subject to

dX(t)

dt
= f

(
X(t), G,W (t), t

)
, X0

(2)

where R(X(t), G,W (t), t) = R(X0 +
∫ t
0
f(X(τ), G,W (τ), τ) dτ) is the running loss of the

dynamics on graph at time t, and S(Y (X(T),Θ)) = S(Y (X0 +
∫ T
0
f(X(τ), G,W (τ), τ) dτ, Θ))

is the terminal semantic loss at time stamp T . By integrating Ẋ = f(X,G,W, t) over time t from
initial state X0 (a.k.a. solving the initial value problem [9] for this differential equation system), we
can get the X(t) for any arbitrary time stamp t > 0.

An equivalent formulation of Eq.(2) by explicitly solving the initial value problem of differential
equation system is:

argmin
W (t),Θ(T)

L =

∫ T

0

R
(
X(t), G,W (t), t

)
dt+ S

(
Y (X(T),Θ)

)
subject to X(t) = X(0) +

∫ t

0

f
(
X(τ), G,W (τ), τ

)
dτ

(3)

2

𝑋 ℎ

𝑋 ℎ + 1 = 𝑋(ℎ) + 𝑓ℎ(𝑋(ℎ))

Diffusion

Weight

ReLU

× 𝛿 = 1

+

𝑋 𝑡

𝑋 𝑡 + 𝛿 = 𝑋(𝑡) + න

𝑡

𝑡+𝛿

𝑓(𝑋, 𝐺,𝑊, 𝜏) 𝑑𝜏

𝑋𝑒 𝑡

𝑋𝑒 𝑡 + 𝛿 = 𝑋𝑒(𝑡) + න

𝑡

𝑡+𝛿

𝑓(𝑋𝑒 , 𝐺,𝑊, 𝜏) 𝑑𝜏

𝑋 𝑡

Diffusion

Weight

ReLU

× 𝛿 → 0+

+
න
𝑡

𝑡+𝛿

Diffusion

Weight

ReLU

W
ei
gh
t

Ta
n
h

W
ei
gh
t

Ta
n
h

න
𝑡

𝑡+𝛿

𝑓𝑒

𝑓𝑑

a) Residual-GNN b) ODE-GNN c) NDCN

𝑑𝑋 𝑡

𝑑𝑡

𝑑𝑋𝑒 𝑡

𝑑𝑡

Figure 1: Illustration of the modeling framework: a) Residual Graph Neural Networks, b) ODE-GNN
model and c) Our Neural Dynamics on Complex Network (NDCN) model. The h represents the
discrete hth layer and t represents continuous physical time.

Moreover, to further increase the expressability of the model, inspired by representation learning [7],
embedding methods [11] and decoupling methods in differential equation theory, we can encode the
network signal X(t) from the original space to the transformed signal Xe(t) in embedding space
(usually with different number of dimensions), and learn the dynamics in such space. Then our model
becomes:

argmin
W (t),Θ(T)

L =

∫ T

0

R
(
X(t), G,W (t), t

)
dt+ S

(
Y (X(T),Θ)

)
subject to Xe(t) = fe

(
X(t)

)
,

Xe(t) = Xe(0) +

∫ t

0

f
(
Xe(τ), G,W (τ), τ

)
dτ,

X(t) = fd
(
Xe(t)

)
(4)

where first constraint encodes X(t) into the embedded signal Xe(t) through embedding function fe.
The second constraint is basically the initial value problem in the embedded space which governs the
network dynamics. The third constraint decodes the embedded signal back to the original space with
mapping function fd.

We solve the initial value problem of integrating the differential equation systems numerically (e.g.,
by Dormand–Prince method DOPRI5 [12]) in the forward process, and backpropagate the gradients
of the loss function w.r.t the control parameters over the numerical integration process backwards
and solve the optimization problem by stochastic gradient descent methods (e.g., Adam [23]). We
will show concrete examples of above framework by learning dynamics on complex networks, and
learning the semantic labels of nodes’ terminal states.

3 Learning dynamics on complex networks

In this section we are trying to answer the first question, how to learn the (nonlinear) dynamics
˙X(t) of complex networks from empirical data. We will solve the problem (4) without emphasizing

terminal loss S as no label information involved in this part. More concretely, without the loss of
generality, we use `1-norm loss as the running lossR, a fully connected neural network with a single
hidden layer as the embedding function fe, a graph neural network (GNN) structure [6] to model the
instantaneous network dynamics in the embedding space, and a linear mapping function fd. Thus,

3

our optimization problem becomes as follows and we illustrate the neural structures in the constraint
as shown in Figure 1 :

argmin
W (t),b(t),We,be,Wd,bd

L =

∫ T

0

|X(t)− ˆX(t)| dt

subject to Xe(t) = tanh
(
X(t)We + be

)
W (0) + b(0),

Xe(t) = Xe(0) +

∫ t

0

ReLU
(

ΦXe(τ)W (τ) + b(τ)
)
dτ,

X(t) = Xe(t)Wd + bd

(5)

where ˆX(t) ∈ Rn×d is the supervised dynamic information available at time stamp t (in the
semi-supervised case the missing information can be padded by 0). The |·| denotes `1-norm
loss (mean element-wise absolute value difference) between X(t) and ˆX(t) at time t ∈ [0, T].
Φ = D−

1
2 (D − A)D−

1
2 ∈ Rn×n is the diffusion operator in GNN, which is the normalized

graph Laplacian constructed on the network. A ∈ Rn×n is the adjacency matrix of the network
and D ∈ Rn×n is the corresponding node degree matrix. W (t) ∈ Rde×de and b(t) ∈ Rn×de
are control parameters at time t (namely, the weights and bias of a linear connection layer at
time t), We ∈ Rd×de and Wd ∈ Rde×d are the transformation matrices for encoding and decod-
ing, and bd ∈ Rn×d is the bias at the decoding layer. For brevity, we call all the parameters
W (t), b(t),We, be,Wd, bd as control parameters, or control, which need to be estimated from empiri-
cal data so that we can learn Ẋ in a data-driven manner. The neural differential equation system we
used is ˙X(t) = ReLU(ΦX(t)W (t) + b(t)).

By applying the basic linear operator, which is the normalized graph Laplacian Φ, together with
nonlinear activation function ReLU for differential equation systems in the embedding space, our
model can capture various (linear or nonlinear) dynamics Ẋ = f(X,G,W, t) on different complex
networks G accurately. Let

−−→
xi(t) ∈ Rd×1 be the d dimensional feature states of node i at time t

and thus X(t) = [. . . ,
−−→
xi(t), . . .]

T . We investigate following real-world network dynamics Ẋ =
f(X,G,W, t):

• The heat diffusion dynamics governed by Newton’s law of cooling [30], i.e.

d
−−→
xi(t)

dt
= −ki,j

∑n

j=1
Ai,j(

−→xi −−→xj), (6)

which states that the rate of heat change of node i is proportional to the difference in the
temperatures between i and its neighbors with heat capacity matrix A.

• The mutualistic interaction dynamics among species in ecology, governed by equation (For
brevity, the operations between vectors are element-wise).

d
−−→
xi(t)

dt
= bi +−→xi(1−

−→xi
ki

)(
−→xi
ci
− 1) +

n∑
j=1

Ai,j

−→xi−→xj
di + ei

−→xi + hj
−→xj
. (7)

The mutualistic differential equation systems [17] capture the abundance ~xi(t) of species
i, consisting of incoming migration term bi, logistic growth with population capacity ki
[51] and Allee effect [1] with cold-start threshold ci, and mutualistic interaction term with
interaction network A.

• The gene regulatory dynamics governed by Michaelis-Menten equation [2]

d
−−→
xi(t)

dt
= −bi ~xif +

∑n

j=1
Ai,j

−→xjh
−→xjh + 1

(8)

where the first term models degradation when f = 1 or dimerization when f = 2, and the
second term captures genetic activation tuned by the Hill coefficient h [17].

Please refer to Appendix B for the animations of these dynamics on various complex networks.

3.1 Experiments

We first investigate whether our NDCN model can correctly learn the above dynamics on following
networks: (a) Grid network, where each node is connected with 8 neighbors (adjacency matrix shown

4

Grid
Ti

m
e

Random Power
Law

Small
World

Real NDCN Real NDCN Real NDCN Real NDCN Real NDCN

(a) (b) (c) (d) (e) Comm
unity

0

Figure 2: Heat diffusion on different networks. Each of the five vertical panel represents the dynamics
on one network over physical time. For each network dynamics, we illustrate the sampled ground
truth dynamics (left) and the dynamics generated by our NDCN (right) from top to down following
the direction of time.

in Fig. 2(a)) [19]; (b) Random network, which is generated by Erdós and Rényi model [14] (adjacency
matrix shown in Fig. 2(b)); (c) Power-law network, whigenerated by Albert-Barabási model [3]
(adjacency matrix shown in Fig. 2(c)); (d) Small-world network, which is generated by Watts-Strogatz
model [45] (adjacency matrix shown in Fig. 2(d)); and (e) Community network, generated by random
partition model [16] (adjacency matrix shown in Fig. 2(e)).

Baselines. We compare our NDCN by investigating whether the embedding, graph operator, control
parameters are indispensable, i.e. can our model still work well without any of these components.
We keep the loss function the same and construct the following baselines:

• No-embedding model X(t) = X(0) +
∫ t
0

ReLU(ΦX(τ)W (τ) + b(τ)) dτ , namely ODE-
GNN, which learns the dynamics in the original state space X(t);

• No-graph-operator model Xe(t) = Xe(0) +
∫ t
0

ReLU(Xe(τ)W (τ) + b(τ)) dτ , Xe(t) =
tanh(X(t)We + be)W (0) + b(0), X(t) = Xe(t)Wd + bd, namely ODE-NN, which can be
thought as a continuous-time residual (differential) neural network without considering the
network structure;

• No-control-parameter model Xe(t) = Xe(0) +
∫ t
0

ReLU
(

ΦXe(τ)
)
dτ , Xe(t) =

tanh(X(t)We + be)W (0) + b(0), X(t) = Xe(t)Wd + bd, which has no linear connection
layer between t and t + dt (where dt → 0) in the running dynamics and only keeps the
parameters in the embedding layers.

Experimental setup. We first generate networks by aforementioned network models with 400 nodes.
The nodes are re-ordered according to community detection method by Newman [32]. We visualize
their adjacency matrices in Fig. 2,3 and 4. We layout these networks in a grid and thus nodes’ states
X(t) are visualized as functions on the grid. We set the initial value X(0) the same for all the
experimental settings and thus different dynamics are only due to their different dynamic rules and
underlying networks modelled by Ẋ = f(X,G,W, t) as shown in Fig. 2,3 and 4. The supervised
information ˆX(t) are 20 evenly-spaced-sampled dynamics during [0, T]. Please kindly refer to
Appendix B for the animations of all the network dynamics and their detailed configurations. We
choose 20 as the embedding dimensionality. We solve the initial value problem of integrating the
differential equation systems numerically by Dormand–Prince method DOPRI5 [12] in the forward
process. We train our model for a maximum of 2000 epochs using Adam [23] with learning rate 0.01
and `2 regularization parameter set to 0.001. We evaluate the results by standard `1 loss, namely

5

Grid

Ti
m

e

Random Power
Law

Small
World

Real NDCN Real NDCN Real NDCN Real NDCN Real NDCN

(a) (b) (c) (d) (e) Comm
unity

0

Figure 3: Biological mutualistic interaction on different networks.

mean element-wise absolute value difference between X(t) and ˆX(t) over t ∈ [0, T] and normalized
`1 loss normalized by the mean element-wise value of ˆX(t), and they lead to the same conclusion.
For the ease of comparison, we report normalized `1 loss in Table 1 (See Appendix C.1 for the
absolute error). Results are mean and standard deviation of the loss over 20 independent runs.

Grid

Ti
m

e

Random Power
Law

Small
World

Real NDCN Real NDCN Real NDCN Real NDCN Real NDCN

(a) (b) (c) (d) (e) Comm
unity

0

Figure 4: Gene regulation dynamics on different networks.

3.2 Results
The numerical results are summarized in Table 1 and the visualization of the learned dynamics
are shown in Fig. 2,3 and 4 (See the animations of these network dynamics in Appendix B). We
can observe that our NDCN captures different dynamics on various complex networks accurately
and outperforms all baselines, namely the models without embedding, control parameters or graph
operator, by a large margin, indicating that our NDCN potentially serves as a minimal model in
learning dynamics on complex networks.

We also examine other experimental settings in Ẋ = f(X,G,W, t): (a) other activation functions like
hyperbolic tangent function tanh; (b) graph operator including Laplacian without being normalized,
convolution operator adopted in graph convolution neural network [24], etc.; (c) different numerical
integration method for initial value problem like Euler’s method [9], etc.; they all get worse results
than our model and we do not report them here for brevity (Appendix C).

6

Table 1: Our NDCN captures different network dynamics accurately. The mean fitting errors with
standard deviation (in percentage %) in 20 runs measured by normalized `1 loss.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Embedding 28.7± 9.2 29.1± 0.5 28.4± 2.3 27.5± 5.1 32.9± 2.7
No-Graph 39.5± 1.8 10.5± 1.4 15.8± 0.6 22.3± 0.5 27.1± 1.9
No-Control 60.7± 0.9 34.8± 0.0 34.5± 0.5 39.9± 0.2 41.3± 0.4
NDCN 3.9± 0.7 7.2± 0.2 5.4± 0.7 3.4± 0.6 9.4± 0.7

Mutualistic
Interaction

No-Embedding 37.3± 4.5 19.5± 1.8 35.6± 12.6 35.9± 3.1 22.7± 4.1
No-Graph 39.6± 7.3 8.9± 3.0 23.4± 3.3 35.8± 3.0 14.0± 1.0
No-Control 81.2± 0.8 21.6± 0.3 57.5± 0.1 75.5± 0.7 30.9± 0.1
NDCN 11.3± 1.8 5.8± 0.6 9.2± 0.7 12.0± 1.4 6.8± 0.4

Gene
Regulation

No-Embedding 34.9± 10.8 12.0± 7.8 33.4± 9.1 28.0± 9.6 20.7± 7.8
No-Graph 29.4± 33.8 12.3± 0.9 39.9± 1.0 15.8± 0.5 19.4± 0.2
No-Control 61.9± 0.2 35.7± 0.4 45.0± 0.1 48.2± 0.1 39.6± 0.5
NDCN 6.3± 0.6 1.3± 0.3 2.8± 0.2 4.9± 0.4 2.1± 0.3

4 Learning terminal semantic labels
In this section we investigate the second question, i.e., how to learn the semantic labels of each node
at terminal time? Here we consider the problem of semi-supervised classification on graphs [49, 24].
By leveraging both the network structure and the semantic features of linked nodes, various graph
neural network (GNN) [6] approaches can achieve the state-of-the-art performance in inferring the
unknown labels of nodes. However, existing GNNs usually adopt 1 or 2 hidden layers [24, 44] and
cannot go deep [27]. Our framework go beyond an integer number L of hidden layers in GNNs
to a real continuous depth t of hidden layers, implying continuous-time dynamics on graphs. We
also observe that by integrating continuous-time dynamics over graph, we get more fine-grained
forward process and thus our NDCN model shows very competitive even better results compared
with state-of-the-art GNN models which may have sophisticated parameters (e.g. attention).

Following the same framework as in Section 3, we propose a specific model to achieve this goal by
solving the following optimization problem, where the terminal semantic loss S(Y (T)) is modeled
by the standard cross-entropy loss for classification task:

argmin
We,be,Wd,bd

L =

∫ T

0

R(t) dt−
n∑

i=1

c∑
k=1

Ŷi,k(T) log Yi,k(T)

subject to Xe(t) = tanh
(
X(t)We + be

)
,

Xe(t) = Xe(0) +

∫ t

0

ReLU
(

ΦXe(τ)
)
dτ,

Y (t) = softmax(Xe(t)Wd + bd)

(9)

where Y (t) ∈ Rn×c is the label distributions of nodes at time T whose element Yi,k(t) denotes
the probability of the node i = 1, . . . , n with label k = 1, . . . , c at time t. The Ŷ ∈ Rn×c is the
supervised information (again missing information can be padded by 0) observed at time T . We use
differential equation system ˙X(t) = ReLU(ΦX(t)).

Faced with limited semi-supervised data at a single snapshot, in order to learn a model with better
generalization performance and avoid over-fitting, we: a) model the running loss

∫ T
0
R(t) dt as the

`2-norm regularizer of the control parameters, and b) make more realistic assumptions of the unknown
network dynamics to eliminate the overdose of the control parameters. Here, we only keep the control
parameters in the embedding layers and thus

∫ T
0
R(t) dt = λ(|We|22 + |be|22 + |Wd|22 + |bd|22). We

adopt the diffusion operator Φ = D̃−
1
2 (αI + (1 − α)A)D̃−

1
2 where A is the adjacency matrix,

D is the degree matrix and D̃ = αI + (1 − α)D keeps Φ normalized. The parameter α ∈ [0, 1]
tunes nodes’ adherence to their previous information or their neighbors’ collective opinion. The
differential equation system Ẋ = ΦX follows the dynamics of averaging the neighborhood opinion

as d
−−−→
xi(t)
dt = α

(1−α)di+α
−−→
xi(t) +

∑n
j Ai,j

1−α√
(1−α)di+α

√
(1−α)dj+α

−−−→
xj(t) for node i. When α = 0, Φ

averages the neighbors as normalized random walk, when α = 1, Φ captures exponential dynamics
without network effects, and when α = 0.5, Φ averages both neighbors and itself as in [24].

4.1 Experiments

7

Table 2: Statistics for three real-world citation network
datasets. N, E, D, C represent number of nodes, edges, fea-
tures, classes respectively.

Dataset N E D C Train/Valid/Test

Cora 2, 708 5, 429 1, 433 7 140/500/1, 000
Citeseer 3, 327 4, 732 3, 703 6 120/500/1, 000
Pubmed 19, 717 44, 338 500 3 60/500/1, 000

We validate our model in graph
semi-supervised classification set-
ting, which infers the node seman-
tic labels given the underlying graph,
nodes’ features and few supervised
labels of nodes. We find by capturing
the continuous-time dynamics, our NDCN model shows very competitive even better results com-
pared with state-of-the-art GNNs with sophisticated parameters. Besides, we DO NOT use common
deep learning techniques adopted in previous GNN models, including dropout, connections between
layers, and the concept of layer depth. Our model is all about continuous-time Neural Dynamics on
Complex Networks/graphs (NDCN).

Datasets. Three standard benchmark datasets, namely citation network Cora, Citeseer and Pubmed
[49] are used. We follow the same fixed split scheme for train, validation and test datasets for
comparison as in [49, 24, 43]. We summarize the datasets in Table 2.

Baselines. We compare our NDCN model with graph embedding method DeepWalk [34] and the
state-of-the-art GNN models, including graph convolution network (GCN) [24], attention-based
graph neural network (AGNN) [43], and graph attention networks (GAT) [44] with sophisticated
attention parameters.

Experimental setup. For the consistency of comparison with prior work, we follow the same
experimental setup as [24, 44, 43]. We train our model based on the training datasets and get the
accuracy of classification results from the test datasets with 1, 000 labels as summarized in Table 2.
Following hyperparameter settings apply to all the datasets. We set 16 evenly spaced time ticks in
[0, T] and solve the initial value problem of integrating the differential equation systems numerically
by DOPRI5 [12]. We train our model for a maximum of 100 epochs using Adam [23] with learning
rate 0.01 and `2-norm regularization 0.024. We grid search the best terminal time T ∈ [0.5, 1.5] and
the α ∈ [0, 1]. We use 256 hidden dimension. We report the mean and standard deviation of results
for 100 runs in Table 3. It’s worthwhile to emphasize that in our model there is no running control
parameters (i.e. linear connection layers in GNNs), no dropout (e.g., dropout rate 0.5 in GCN and 0.6
in GAT), no early stop, and no concept of layer/network depth (e.g., 2 layers in GCN and GAT).

4.2 Results Table 3: Test mean accuracy with standard deviation
in percentage (%) over 100 runs. Our model gives
competitive even better results compared with many
state-of-the-art Graph Neural Network (GNN) models.

Model Cora Citeseer Pubmed

DeepWalk 70.7± 0.6 51.4± 0.5 76.8± 0.6
GCN 81.5 70.3 79.0
AGNN 83.1± 0.1 71.7± 0.1 79.9± 0.1
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3

NDCN 83.3± 0.6 73.1± 0.6 79.8± 0.4

We summarize the results in Table 3. We
find our NDCN outperforms many state-of-
the-art GNN models. Results for the base-
lines are taken from [24, 44, 43, 47]. We
report the mean and standard deviation of
our results for 100 runs. We get our re-
ported results in Table 3 when terminal time
T = 1.2 , α = 0 for the Cora dataset,
T = 1.0, α = 0.8 for the Citeseer dataset,
and T = 1.1, α = 0.4 for the Pubmed dataset.

(a) (b) (c)

Figure 5: Our NDCN model captures continuous-time dynamics. Mean classification accuracy of
100 runs over terminal time when given a specific α. Insets are the accuracy over the two-dimensional
space of terminal time and α
By capturing the continuous-time network dynamics, our NDCN gives better classification accuracy
at terminal time T ∈ R+. Indeed, when the terminal time is too small or too large, the accuracy
degenerates due to the fact that the features of nodes are in under-diffusion, or over-diffusion
states. Figure 5 plots the mean accuracy (100 runs) with error bars over terminal time T in the
abovementioned α settings (we further plot the accuracy over terminal time T and α in the insets

8

and Appendix D), we find for all the three datasets their accuracy curves follow rise and fall pattern
around the best terminal time. In contrast, previous GNNs can only have integer number of layers
which can not capture the continuous-time network dynamics accurately.

5 Related work
Dynamics of complex systems. Real-world complex systems are modeled by complex networks
and driven by nonlinear dynamics [33]. The dynamics of brain and human microbial are examined
in [18] and [5] respectively. [17] and [28] investigated the resilience patterns and controllability of
complex systems respectively. [4] gave a pipeline to construct network dynamics. To the best of
our knowledge, our NDCN model is the first neural network approach which learns the dynamics of
complex networks in a data-driven manner.

Data-driven dynamics. Recently, some data-driven approaches are proposed to learn ODEs or PDEs,
including sparse regression [25], residual network [35], feedforward neural network [37], coupled
neural networks [36] and so on. [31] tries to learn biological networks dynamics by sparse regression
over a large library, which is not scalable to systems with more than 10 nodes. In all, none of them
can learn the dynamics of complex systems with more than hundreds of nodes.

Neural ODEs. Inspired by residual network [21] and ordinary differential equation (ODE) theory [29,
39], seminal work neural ODE model [10] was proposed to re-write residual networks, normalizing
flows, and recurrent neural network decoders by integrating the differential equations over time in
the forward process of deep learning framework. See improved Neural ODEs in [13]. However, our
NDCN model deals with complex differential equations systems. Besides, our model solves different
problems, namely learning the dynamics of complex systems and semantic labels of their nodes at
terminal time.

Optimal control. Relationships between back-propagation in deep learning [38] and optimal control
theory [15] are investigated in [46, 20, 8]. We formulate our loss function by leveraging the concept
of running loss and terminal loss in optimal control. We give a novel constraint in optimal control
which is modeled by neural differential equations systems on graphs. Novel tasks learning the
running dynamics on complex networks and inferring the terminal labels are done by our NDCN in a
data-driven manner.

Graph neural networks. Graph neural networks (GNN) [48] aim at applying deep learning tech-
niques to graph data consisting of linked objects. Graph convolution network (GCN) [24], attention-
based graph neural network (AGNN) [43], graph attention networks (GAT) [44] etc. achieved
state-of-the-art performance on semi-supervised classification task on graphs. However, GNNs have
usually 1 or 2 layers and can not go deep[27, 48]. Our NDCN gives a novel perspective on GNNs:
we give the meanings of physical time and the continuous-time network dynamics to the layers
and the hidden outputs respectively. By capturing continuous-time dynamics, we outperform above
state-of-the-art GNNs in our second task. By combining RNN and GNN, [50] tries to predict the
spatial-temporal data. The RNN leans discrete sequential samples by iterative mapping and our ODE
method learns the continuous-time dynamics by integrating over physical time for physical processes
in the real world [42].

6 Conclusion
We propose a novel neural network model to learn continuous-time dynamics on complex networks
and infer the semantic labels of nodes at terminal time. We formulate the problem as an optimal
control problem and propose a neural differential equations systems structure as the constraints of
the optimization problem. By capturing the continuous-time network dynamics, our NDCN gives
the meanings of physical time and the continuous-time network dynamics to the neural network
framework, learns real-world complex network dynamics accurately, and outperforms many state-
of-the-art GNN models in the graph semi-supervised classification task. Codes and datasets are
open-sourced at Appendix A.

References
[1] Warder Clyde Allee, Orlando Park, Alfred Edwards Emerson, Thomas Park, Karl Patterson Schmidt, et al.

Principles of animal ecology. Technical report, Saunders Company Philadelphia, Pennsylvania, USA,
1949.

9

[2] Uri Alon. An introduction to systems biology: design principles of biological circuits. Chapman and
Hall/CRC, 2006.

[3] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[4] Baruch Barzel, Yang-Yu Liu, and Albert-László Barabási. Constructing minimal models for complex
system dynamics. Nature communications, 6:7186, 2015.

[5] Amir Bashan, Travis E Gibson, Jonathan Friedman, Vincent J Carey, Scott T Weiss, Elizabeth L Hohmann,
and Yang-Yu Liu. Universality of human microbial dynamics. Nature, 534(7606):259, 2016.

[6] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[7] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[8] Martin Benning, Elena Celledoni, Matthias J Ehrhardt, Brynjulf Owren, and Carola-Bibiane Schön-
lieb. Deep learning as optimal control problems: models and numerical methods. arXiv preprint
arXiv:1904.05657, 2019.

[9] William E Boyce, Richard C DiPrima, and Douglas B Meade. Elementary differential equations and
boundary value problems, volume 9. Wiley New York, 1992.

[10] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, pages 6571–6583, 2018.

[11] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding. IEEE Transactions on
Knowledge and Data Engineering, 2018.

[12] John R Dormand. Numerical methods for differential equations: a computational approach, volume 3.
CRC Press, 1996.

[13] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. arXiv preprint
arXiv:1904.01681, 2019.

[14] P ERDdS and A R&wi. On random graphs i. Publ. Math. Debrecen, 6:290–297, 1959.

[15] Lawrence C Evans. An introduction to mathematical optimal control theory version 0.2. Lecture notes
available at http://math. berkeley. edu/˜ evans/control. course. pdf, 1983.

[16] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

[17] Jianxi Gao, Baruch Barzel, and Albert-László Barabási. Universal resilience patterns in complex networks.
Nature, 530(7590):307, 2016.

[18] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From single
neurons to networks and models of cognition. Cambridge University Press, 2014.

[19] Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends R© in Communica-
tions and Information Theory, 2(3):155–239, 2006.

[20] Jiequn Han, Qianxiao Li, et al. A mean-field optimal control formulation of deep learning. arXiv preprint
arXiv:1807.01083, 2018.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[22] Michał Kalecki. Theory of economic dynamics. Routledge, 2013.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[24] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017.

10

[25] J Nathan Kutz, Samuel H Rudy, Alessandro Alla, and Steven L Brunton. Data-driven discovery of
governing physical laws and their parametric dependencies in engineering, physics and biology. In
2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), pages 1–5. IEEE, 2017.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

[27] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[28] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controllability of complex networks.
nature, 473(7346):167, 2011.

[29] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations. arXiv preprint arXiv:1710.10121, 2017.

[30] A v Luikov. Analytical heat diffusion theory. Elsevier, 2012.

[31] Niall M Mangan, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Inferring biological networks by
sparse identification of nonlinear dynamics. IEEE Transactions on Molecular, Biological and Multi-Scale
Communications, 2(1):52–63, 2016.

[32] Mark Newman. Networks: an introduction. Oxford university press, 2010.

[33] Mark Newman, Albert-Laszlo Barabasi, and Duncan J Watts. The structure and dynamics of networks,
volume 12. Princeton University Press, 2011.

[34] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 701–710. ACM, 2014.

[35] Tong Qin, Kailiang Wu, and Dongbin Xiu. Data driven governing equations approximation using deep
neural networks. arXiv preprint arXiv:1811.05537, 2018.

[36] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. The
Journal of Machine Learning Research, 19(1):932–955, 2018.

[37] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for data-driven
discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018.

[38] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by back-
propagating errors. Cognitive modeling, 5(3):1, 1988.

[39] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations. arXiv
preprint arXiv:1804.04272, 2018.

[40] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199. Prentice hall Englewood
Cliffs, NJ, 1991.

[41] Steven H Strogatz. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to
Physics, Biology, Chemistry, and Engineering. CRC Press, 2018.

[42] Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? arXiv preprint
arXiv:1804.11188, 2018.

[43] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph neural network
for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[45] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440, 1998.

[46] E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics and
Statistics, 5(1):1–11, 2017.

[47] Felix Wu, Tianyi Zhang, Amauri H. Souza Jr., Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. CoRR, 2019.

11

[48] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehen-
sive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[49] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings. In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, pages 40–48, 2016.

[50] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

[51] Chengxi Zang, Peng Cui, Christos Faloutsos, and Wenwu Zhu. On power law growth of social networks.
IEEE Transactions on Knowledge and Data Engineering, 30(9):1727–1740, 2018.

12

A Reproducibility

To ensure the reproducibility, we open-sourced our datasets and Pytorch implementation empowered
by GPU and sparse matrix at:

B Animations of the real-world dynamics on different networks

Please view the animations of the three real-world dynamics on five different networks learned by
different models at:

https://drive.google.com/open?id=1KBl-6Oh7BRxcQNQrPeHuKPPI6lndDa5Y

We will find our NDCN captures the real-world dynamics on different networks very accurately while
the baselines can not. The detailed experimental configurations are shown as follows:

Underlying Networks: We generate various networks by as follows, and we visualize their adjacency
matrix after re-ordering their nodes by the community detection method by Newman [32].

• Grid network:

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Figure 6: Adjacency matrix of grid network taking on a circulant matrix [19].

d e f g r i d _ 8 _ n e i g h b o r _ g r a p h (N) :
" " "
B u i l d d i s c r e t e g r i d graph , each node has 8 n e i g h b o r s
: param n : s q r t o f t h e number o f nodes
: r e t u r n : A, t h e a d j a c e n c y m a t r i x
" " "
N = i n t (N)
n = i n t (N ∗∗ 2)
dx = [−1 , 0 , 1 , −1, 1 , −1, 0 , 1]
dy = [−1 , −1, −1, 0 , 0 , 1 , 1 , 1]
A = t o r c h . z e r o s (n , n)
f o r x i n r a n g e (N) :

f o r y i n r a n g e (N) :
i n d e x = x ∗ N + y
f o r i i n r a n g e (l e n (dx)) :

13

https://drive.google.com/open?id=1KBl-6Oh7BRxcQNQrPeHuKPPI6lndDa5Y

newx = x + dx [i]
newy = y + dy [i]
i f N > newx >= 0 and N > newy >= 0 :

in de x2 = newx ∗ N + newy
A[index , i nd ex 2] = 1

r e t u r n A. f l o a t ()
n = 400
N = i n t (np . c e i l (np . s q r t (n)))
A = g r i d _ 8 _ n e i g h b o r _ g r a p h (N)

• Random network:

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Figure 7: Adjacency matrix of random network.

i m p o r t ne tworkx as nx
n = 400
G = nx . e r d o s _ r e n y i _ g r a p h (n , 0 . 1 , s eed = seed)

• Power-law network:

n = 400
G = nx . b a r a b a s i _ a l b e r t _ g r a p h (n , 5 , s eed = seed)

• Small-world network:

n = 400
G = nx . n e w m a n _ w a t t s _ s t r o g a t z _ g r a p h (4 0 0 , 5 , 0 . 5 , s eed = seed)

• Community network:

n1 = i n t (n / 3)
n2 = i n t (n / 3)
n3 = i n t (n / 4)
n4 = n − n1 − n2 −n3
G = nx . r a n d o m _ p a r t i t i o n _ g r a p h ([n1 , n2 , n3 , n4] , . 2 5 , . 0 1 , s eed = seed)

Initial values: We set the initial value X(0) the same for all the experimental settings and thus
different dynamics are only due to their different dynamic rules and underlying networks modelled
by Ẋ = f(X,G,W, t) as shown in Fig. 2,3 and 4. Please see above animations to check out different
network dynamics.

14

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Figure 8: Adjacency matrix of power-law network.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Figure 9: Adjacency matrix of small-world network.

n = 400
N = i n t (np . c e i l (np . s q r t (n)))
x0 = t o r c h . z e r o s (N, N)
x0 [i n t (0 . 0 5∗N) : i n t (0 . 2 5∗N) , i n t (0 . 0 5∗N) : i n t (0 . 2 5∗N)] = 25
x0 [1 : 5 , 1 : 5] = 25 f o r N = 20 or n= 400 c a s e
x0 [i n t (0 . 4 5∗N) : i n t (0 . 7 5∗N) , i n t (0 . 4 5∗N) : i n t (0 . 7 5∗N)] = 20
x0 [9 : 1 5 , 9 : 1 5] = 20 f o r N = 20 or n= 400 c a s e
x0 [i n t (0 . 0 5∗N) : i n t (0 . 2 5∗N) , i n t (0 . 3 5∗N) : i n t (0 . 6 5∗N)] = 17
x0 [1 : 5 , 7 : 1 3] = 17 f o r N = 20 or n= 400 c a s e

15

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Figure 10: Adjacency matrix of community network.

Network Dynamics: We adopt following three real-world dynamics from different disciplines.
Please see above animations to check out the visualization of different network dynamics. The
differential equation systems are shown as follows:

• The heat diffusion dynamics governed by Newton’s law of cooling [30],

d
−−→
xi(t)

dt
= −ki,j

∑n

j=1
Ai,j(

−→xi −−→xj) (10)

states that the rate of heat change of node i is proportional to the difference in the tempera-
tures between i and its neighbors with heat capacity matrix A. We use k = 1 here.

• The mutualistic interaction dynamics among species in ecology, governed by equation

d
−−→
xi(t)

dt
= bi +−→xi(1−

−→xi
ki

)(
−→xi
ci
− 1) +

n∑
j=1

Ai,j

−→xi−→xj
di + ei

−→xi + hj
−→xj
. (11)

The mutualistic differential equation systems [17] capture the abundance ~xi(t) of species
i, consisting of incoming migration term bi, logistic growth with population capacity ki
[51] and Allee effect [1] with cold-start threshold ci, and mutualistic interaction term with
interaction network A. We use b = 0.1, k = 5.0, c = 1.0, d = 5.0, e = 0.9, h = 0.1 here.

• The gene regulatory dynamics governed by Michaelis-Menten equation

d
−−→
xi(t)

dt
= −bi ~xif +

∑n

j=1
Ai,j

−→xjh
−→xjh + 1

(12)

where the first term models degradation when f = 1 or dimerization when f = 2, and
the second term captures genetic activation tuned by the Hill coefficient h [17]. We adopt
b = 1.0, f = 1.0, h = 2.0 here.

Terminal Time: We use T = 5 for mutualistic dynamics and gene regulatory dynamics over different
networks, and T = 5, 0.1, 0.75, 2, 0.2 for heat dynamics on grid, random graph, power-law network,
small-world network, and community network respectively due to their different time scale of network
dynamics. Please see above animations to check out different network dynamics.

Visualizations of network dynamics: Please see above animations to check out the visualization
of different network dynamics. We generate networks by aforementioned network models with 400
nodes. The nodes are re-ordered according to community detection method by Newman [32]. We
visualize their adjacency matrices in Fig. 2,3 and 4. We layout these networks in a grid and thus
nodes’ states X(t) are visualized as functions on the grid.

16

d e f g e n e r a t e _ n o d e _m a p p i n g (G, t y p e =None) :
" " "
: param G:
: param t y p e :
: r e t u r n :
" " "
i f t y p e == ’ degree ’ :

s = s o r t e d (G. degree , key=lambda x : x [1] , r e v e r s e =True)
new_map = { s [i] [0] : i f o r i i n r a n g e (l e n (s)) }

e l i f t y p e == ’ community ’ :
c s = l i s t (community . g r e e d y _ m o d u l a r i t y _ c o m m u n i t i e s (G))
l = []
f o r c i n cs :

l += l i s t (c)
new_map = { l [i] : i f o r i i n r a n g e (l e n (l)) }

e l s e :
new_map = None

r e t u r n new_map

d e f n e t w o r k x _ r e o r d e r _ n o d e s (G, t y p e =None) :
" " "
: param G: networkX on ly a d j a c e n c y m a t r i x w i t h o u t a t t r s
: param nodes_map : nodes mapping d i c t i o n a r y
: r e t u r n :
" " "
nodes_map = g e n e r a t e_ n o d e _ m ap p i n g (G, t y p e)
i f nodes_map i s None :

r e t u r n G
C = nx . t o _ s c i p y _ s p a r s e _ m a t r i x (G, f o r m a t = ’ coo ’)
new_row = np . a r r a y ([nodes_map [x] f o r x i n C . row] , d t y p e =np . i n t 3 2)
new_col = np . a r r a y ([nodes_map [x] f o r x i n C . c o l] , d t y p e =np . i n t 3 2)
new_C = sp . c o o _ m a t r i x ((C . da t a , (new_row , new_col)) , shape =C . shape)
new_G = nx . f r o m _ s c i p y _ s p a r s e _ m a t r i x (new_C)
r e t u r n new_G

G = n e t w o r k x _ r e o r d e r _ n o d e s (G, a r g s . l a y o u t)
A = t o r c h . F l o a t T e n s o r (nx . to_numpy_ar ray (G))

d e f v i s u a l i z e _ g r a p h _ m a t r i x (G, t i t l e , d i r =r ’ f i g u r e / network ’) :
A = nx . to_numpy_ar ray (G)
f i g = p l t . f i g u r e () # f i g s i z e =(12 , 4) , f a c e c o l o r = ’ whi te ’
f i g . t i g h t _ l a y o u t ()
p l t . imshow (A, cmap= ’ Greys ’) # ’ ’ YlGn ’)
p l t . pco lo rmesh (A)
p l t . show ()

d e f v i s u a l i z e _ n e t w o r k _ d y n a m i c s (N, x0 , xt , f igname , t i t l e = ’ Dynamics i n Complex Network ’ , d i r = ’ png_ lea rn_dynamics ’ , zmin=None , zmax=None) :
" " "
: param N: N∗∗2 i s t h e number o f nodes , N i s t h e p i x e l o f g r i d
: param x0 : i n i t i a l c o n d i t i o n
: param x t : s t a t e s a t t ime t t o p l o t
: param f igname : f igname , numbered
: param t i t l e : t i t l e i n f i g u r e
: param d i r : d i r t o save
: param zmin : ax . s e t _ z l i m (zmin , zmax)
: param zmax : ax . s e t _ z l i m (zmin , zmax)
: r e t u r n :

17

" " "
i f zmin i s None :

zmin = x0 . min ()
i f zmax i s None :

zmax = x0 . max ()
f i g = p l t . f i g u r e () # f i g s i z e =(12 , 4) , f a c e c o l o r = ’ whi te ’
f i g . t i g h t _ l a y o u t ()
x0 = x0 . d e t a c h ()
x t = x t . d e t a c h ()
ax = f i g . gca (p r o j e c t i o n = ’3d ’)
ax . c l a ()
X = np . a r a n g e (0 , N)
Y = np . a r a n g e (0 , N)
X, Y = np . meshgr id (X, Y)
s u r f = ax . p l o t _ s u r f a c e (X, Y, x t . numpy () . r e s h a p e ((N, N)) , cmap= ’ rainbow ’ ,

l i n e w i d t h =0 , a n t i a l i a s e d = F a l s e , vmin=zmin , vmax=zmax)
ax . s e t _ z l i m (zmin , zmax)
f i g . s a v e f i g (d i r + ’ / ’+ f igname + " . png " , t r a n s p a r e n t =True)
f i g . s a v e f i g (d i r + ’ / ’+ f igname + " . pdf " , t r a n s p a r e n t =True)
p l t . draw ()
p l t . pause (0 . 0 0 1)
p l t . c l o s e (f i g)

C More results.

C.1 Results in absolute error.

We show corresponding `1 loss error with respect to normalized `1 loss error in Table 1.

Table 4: Our NDCN captures different network dynamics accurately. The mean fitting errors with
standard deviation (in absolute error) in 20 runs measured by `1 loss.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Embedding 1.095± 0.353 1.113± 0.021 1.083± 0.086 1.049± 0.196 1.256± 0.104
No-Graph 1.509± 0.068 0.400± 0.052 0.603± 0.022 0.850± 0.018 1.037± 0.073
No-Control 2.319± 0.034 1.331± 0.000 1.318± 0.019 1.524± 0.009 1.578± 0.016
NDCN 0.147± 0.026 0.274± 0.009 0.208± 0.028 0.129± 0.021 0.359± 0.026

Mutualistic
Interaction

No-Embedding 0.945± 0.114 2.558± 0.238 2.054± 0.727 0.887± 0.070 2.563± 0.460
No-Graph 1.004± 0.185 1.173± 0.389 1.349± 0.191 0.803± 0.066 1.584± 0.108
No-Control 2.058± 0.019 2.840± 0.033 3.320± 0.004 1.695± 0.015 3.488± 0.012
NDCN 0.287± 0.046 0.763± 0.081 0.528± 0.041 0.269± 0.032 0.767± 0.042

Gene
Regulation

No-Embedding 1.722± 0.533 3.818± 2.487 2.662± 0.721 1.262± 0.434 5.170± 1.945
No-Graph 1.450± 1.666 3.905± 0.299 3.176± 0.083 0.713± 0.021 4.852± 0.046
No-Control 3.056± 0.010 11.386± 0.138 3.586± 0.010 2.175± 0.005 9.891± 0.119
NDCN 0.312± 0.031 0.401± 0.090 0.221± 0.016 0.220± 0.017 0.516± 0.065

C.2 Activation function

We find ReLU works better than tanh in the setting of learning network dynamics. We summarized
the results in Table 5

C.3 Euler’s method for NDCN

The results of our NDCN where the initial value problem in the forward process is solved by Euler’s
method are shown as follows:

18

Table 5: NDCN with tanh activation function. The mean fitting errors with standard deviation (in
percentage %) in 20 runs measured by normalized `1 loss.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Embedding 43.7± 0.9 34.4± 0.0 34.0± 0.0 36.1± 0.1 41.9± 0.0
No-Graph 38.9± 1.4 21.7± 0.3 17.3± 0.2 22.2± 0.1 31.8± 0.7
No-Control 45.9± 0.2 27.3± 0.4 26.5± 0.1 31.5± 0.2 28.8± 0.5
NDCN 5.1± 0.9 20.9± 0.3 10.9± 0.4 6.9± 1.2 20.0± 1.0

Mutualistic
Interaction

No-Embedding 39.5± 0.0 22.5± 0.0 60.1± 0.2 40.1± 0.0 31.9± 0.1
No-Graph 38.4± 0.1 12.6± 3.4 22.6± 1.7 37.4± 0.1 17.5± 3.8
No-Control 39.1± 0.2 20.3± 0.1 45.0± 1.6 40.5± 0.2 28.8± 0.2
NDCN 10.6± 0.7 7.7± 1.0 10.2± 0.4 13.9± 0.7 9.7± 0.5

Gene
Regulation

No-Embedding 44.6± 0.7 40.5± 0.9 48.8± 0.0 37.5± 0.1 40.7± 0.7
No-Graph 21.1± 0.1 15.9± 3.0 39.4± 0.1 15.5± 0.2 19.8± 0.7
No-Control 48.5± 0.3 18.1± 1.0 18.0± 0.7 32.1± 1.3 23.9± 0.8
NDCN 5.3± 0.5 1.7± 0.5 3.4± 0.2 5.0± 0.2 1.7± 0.3

Table 6: NDCN solved by Euler’s method. The mean fitting errors with standard deviation (in
percentage %) in 20 runs measured by normalized `1 loss.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Embedding 29.2± 12.6 29.4± 0.5 27.3± 0.2 28.6± 5.9 32.3± 2.3
No-Graph 38.2± 0.6 10.4± 1.3 15.5± 0.1 21.4± 0.2 25.3± 0.9
No-Control 58.8± 0.3 34.8± 0.0 34.7± 0.3 39.7± 0.2 41.4± 0.4
NDCN 5.0± 0.4 7.0± 0.4 5.1± 0.2 4.0± 0.5 9.5± 0.9

Mutualistic
Interaction

No-Embedding 35.1± 3.0 14.1± 2.1 35.0± 12.8 39.9± 3.3 21.9± 5.2
No-Graph 35.2± 1.2 6.1± 0.3 20.1± 0.7 33.4± 1.1 12.3± 0.3
No-Control 76.4± 0.3 22.1± 0.5 56.8± 0.1 72.5± 0.6 31.0± 0.5
NDCN 9.7± 0.5 4.6± 0.3 7.0± 0.4 10.6± 0.4 7.0± 0.4

Gene
Regulation

No-Embedding 34.1± 10.9 13.2± 11.3 33.3± 9.3 28.1± 9.3 17.3± 6.1
No-Graph 21.0± 0.2 11.9± 0.1 39.3± 0.1 15.4± 0.2 19.1± 0.4
No-Control 61.0± 0.1 31.7± 1.9 43.5± 0.2 47.6± 0.1 36.5± 0.5
NDCN 6.7± 0.7 1.3± 0.2 3.0± 0.4 4.8± 0.4 2.5± 0.4

C.4 Kipf operator for NDCN

D Accuracy over terminal time and α

By capturing the continuous-time network dynamics, our NDCN gives better classification accuracy
at terminal time T ∈ R+. Indeed, when the terminal time is too small or too large, the accuracy
degenerates due to the fact that the features of nodes are in under-diffusion, or over-diffusion states.
We plot the mean accuracy of 100 runs of our NDCN model over different terminal time T and α as
shown in the following heatmap plots. we find for all the three datasets their accuracy curves follow
rise and fall pattern around the best terminal time.

19

Table 7: NDCN solved by Euler method. The mean fitting errors with standard deviation (in
percentage %) in 20 runs measured by normalized `1 loss.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Embedding ± ± ± ± ±
No-Graph ± ± ± ± ±
No-Control ± ± ± ± ±
NDCN ± ± ± ± ±

Mutualistic
Interaction

No-Embedding ± ± ± ± ±
No-Graph ± ± ± ± ±
No-Control ± ± ± ± ±
NDCN ± ± ± ± ±

Gene
Regulation

No-Embedding ± ± ± ± ±
No-Graph ± ± ± ± ±
No-Control ± ± ± ± ±
NDCN ± ± ± ± ±

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Terminal Time

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Al
ph

a

14.9 15.5 15.1 28.2 53.8 79.5 82.3 83.3 82.2 81.1 80.0

15.7 15.2 15.4 28.8 54.1 79.9 82.6 83.0 82.1 80.7 80.0

14.8 15.5 15.8 29.9 54.5 80.0 82.5 82.9 81.9 80.5 79.7

14.0 15.2 15.5 31.2 55.1 80.3 82.3 82.6 81.7 80.3 79.9

16.0 15.1 16.1 32.1 54.7 80.6 82.6 82.3 81.4 80.3 79.9

14.5 15.4 16.3 34.4 55.0 80.6 82.7 82.2 81.6 80.6 80.0

13.4 13.8 15.7 36.6 54.9 80.5 82.9 82.0 81.7 80.7 80.0

14.9 14.2 16.3 37.3 54.8 80.3 83.0 81.8 81.4 80.6 79.8

14.1 14.0 15.9 39.5 55.4 79.9 82.5 82.0 81.4 80.5 79.9

14.2 14.9 24.0 41.3 68.0 79.9 82.1 82.1 80.9 79.8 79.2

14.1 14.2 30.8 47.2 59.8 58.5 54.4 50.7 50.1 48.1 47.1 15

30

45

60

75

Figure 11: Mean classification accuracy of 100 runs of our NDCN model over terminal time and α
for the Cora dataset in heatmap plot.

20

Alpha

0.0
0.2

0.4
0.6

0.8
1.0

Ter
mina

l Ti
me

0.5
0.7

0.9
1.1

1.3
1.5

Ac
cu

ra
cy

0.13
0.21
0.29
0.37
0.44
0.52
0.60
0.68
0.76
0.83

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 12: Mean classification accuracy of 100 runs of our NDCN model over terminal time and α
for the Cora dataset in 3D surface plot.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Terminal Time

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Al
ph

a

13.9 13.5 17.1 19.1 39.5 67.2 71.9 71.4 69.8 68.4 66.5

16.0 14.4 16.9 18.7 40.9 67.8 72.2 71.5 70.6 68.9 66.5

16.5 13.1 17.3 18.8 42.2 68.6 72.2 71.5 70.7 68.9 66.4

16.4 15.6 17.6 18.7 43.7 69.5 72.3 71.6 70.9 68.9 66.3

16.5 15.4 18.0 19.0 43.6 69.9 72.2 71.6 71.0 69.2 65.7

16.8 16.7 17.7 19.8 43.5 70.4 72.2 71.6 71.1 69.6 65.5

17.1 16.6 18.5 20.5 43.3 71.3 72.2 71.5 71.2 69.4 65.5

15.4 16.2 16.6 19.8 47.6 72.7 72.4 71.4 70.7 68.5 65.9

17.0 16.9 17.2 18.8 58.3 73.1 72.3 71.1 70.0 68.2 66.0

16.6 16.5 16.6 17.4 63.4 72.0 71.5 69.9 68.3 67.0 64.9

16.4 16.5 16.6 33.3 61.4 60.1 57.1 55.0 53.7 51.4 49.4 15

30

45

60

Figure 13: Mean classification accuracy of 100 runs of our NDCN model over terminal time and α
for the Citeseer dataset.

21

Alpha

0.0
0.2

0.4
0.6

0.8
1.0

Ter
mina

l Ti
me

0.5
0.7

0.9
1.1

1.3
1.5

Ac
cu

ra
cy

0.13
0.20
0.26
0.33
0.40
0.46
0.53
0.60
0.66
0.73

0.2

0.3

0.4

0.5

0.6

0.7

Figure 14: Mean classification accuracy of 100 runs of our NDCN model over terminal time and α
for the Citeseer dataset in 3D surface plot.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Terminal Time

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Al
ph

a

53.2 54.1 57.9 73.1 77.6 78.7 78.6 79.2 79.2 78.6 78.0

54.0 55.1 63.1 74.7 78.0 79.1 79.2 79.4 79.5 79.0 78.1

54.5 55.9 68.2 75.9 78.2 79.4 79.4 79.5 79.3 79.1 78.2

55.0 56.7 72.3 76.6 78.5 79.4 79.7 79.6 79.1 79.0 78.2

55.8 60.7 74.4 77.1 78.7 79.6 79.8 79.6 79.2 78.8 78.3

56.7 69.2 75.4 77.3 78.7 79.3 79.8 79.7 79.3 78.9 78.2

60.3 72.7 75.8 77.3 78.7 79.3 79.6 79.6 79.1 78.6 77.9

69.0 74.0 76.0 77.4 78.7 79.3 79.6 79.6 78.6 77.9 77.3

72.7 74.6 76.0 77.4 78.7 78.8 79.2 78.8 78.4 77.5 76.8

73.7 74.6 75.7 77.1 78.0 78.5 78.2 77.9 76.9 76.9 76.3

73.3 73.7 73.8 74.0 73.9 73.3 71.4 69.2 68.3 67.0 65.6 55

60

65

70

75

Figure 15: Mean classification accuracy of 100 runs of our NDCN model over terminal time and α
for the Pubmed dataset.

22

Alpha

0.0
0.2

0.4
0.6

0.8
1.0

Ter
mina

l Ti
me

0.5
0.7

0.9
1.1

1.3
1.5

Ac
cu

ra
cy

0.53
0.56
0.59
0.62
0.65
0.68
0.71
0.74
0.77
0.80

0.55

0.60

0.65

0.70

0.75

Figure 16: Mean classification accuracy of 100 runs of our NDCN model over terminal time and α
for the Pubmed dataset in 3D surface plot.

23

	1 Introduction
	2 The General framework
	3 Learning dynamics on complex networks
	3.1 Experiments
	3.2 Results

	4 Learning terminal semantic labels
	4.1 Experiments
	4.2 Results

	5 Related work
	6 Conclusion
	A Reproducibility
	B Animations of the real-world dynamics on different networks
	C More results.
	C.1 Results in absolute error.
	C.2 Activation function
	C.3 Euler's method for NDCN
	C.4 Kipf operator for NDCN

	D Accuracy over terminal time and

