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Differential Deep Learning on Graphs
Graphs and Differential Equations are general tools to 

describe structures and dynamics of complex systems

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 3



Graph
Linked objects: nodes + edges
Network

Edge

Node
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Graph
Linked objects: nodes + edges
oE.g.: Internet, social networks, molecules, etc.

Node: Atoms,   Edge: BondsNode: IPs,   Edge: Hyperlinks

Edge

Node

Node: users,   Edge: Social links
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Differential Equations
Equations which relates functions (physical 

quantities) and their derivatives (rates of change), e.g.
oe.g.Population growth
Exponential growth: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑎𝑎𝑎𝑎  𝑎𝑎(t) = 𝐶𝐶𝑒𝑒𝑎𝑎𝑑𝑑 solution by integrating

Power-law growth: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎 𝑑𝑑
𝑑𝑑
 𝑎𝑎(t) = 𝐶𝐶𝑡𝑡𝑎𝑎 solution by integrating
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Differential Equations
Equations which relates functions (physical 

quantities) and their derivatives (rates of change), e.g.
oe.g.Population growth
Exponential growth: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑎𝑎𝑎𝑎  𝑎𝑎(t) = 𝐶𝐶𝑒𝑒𝑎𝑎𝑑𝑑 solution by integrating

Power-law growth: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎 𝑑𝑑
𝑑𝑑
 𝑎𝑎(t) = 𝐶𝐶𝑡𝑡𝑎𝑎 solution by integrating

Differential Equation System
oA system of differential equations
oNewton’s law of cooling: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝑘𝑘𝑘𝑘𝑘𝑘

Laplacian matrix: L=D-A, A: adjacency matrix
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Why Graphs and Differential Equations?
Question (Social network analysis): How does 

information spread in social networks? How does 
information flow form complex structural patterns?

Image from: Zang et al. 2019. Uncovering 
Pattern Formation of Information Flow. KDD. DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 8
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Why Graphs and Differential Equations?
Question (Urban computing): Can we predict and 

control traffic flows on road networks?
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Why Graphs and Differential Equations?
Question (Drug discovery): Can we predict molecular 

properties? Can we design novel drug molecule with 
optimized properties?
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Differential Deep Learning on Graphs
Graphs and Differential Equations are general tools to 

describe structures and dynamics of complex systems
Inspired by the differential equations, we can design 

and analyze deep models
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Residual Net. Differential Equations

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕

Conv

ReLU

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 = 𝟏𝟏

+

𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Plain Convolution Net. Residual Net.

12
He et al. 2016. Identity mappings in deep 
residual networks ECCV.
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Residual Net. Differential Equations

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒉𝒉𝒕𝒕+𝜹𝜹 = 𝒉𝒉𝒕𝒕 + �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉,𝜽𝜽, 𝝉𝝉)𝒅𝒅𝝉𝝉

𝒉𝒉𝒕𝒕

Conv

ReLU

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 = 𝟏𝟏

+

𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 → 𝟎𝟎+

+ �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)
𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝜹𝜹

𝒉𝒉𝒕𝒕+𝟏𝟏 − 𝒉𝒉𝒕𝒕
𝛿𝛿

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕 , 𝜹𝜹 = 𝟏𝟏
𝒅𝒅𝒉𝒉𝒕𝒕
𝒅𝒅𝒕𝒕

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕

Plain Convolution Net. Residual Net. Differential Equation Net.

13
Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS.
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RNN  Differential Equations

𝒉𝒉𝒕𝒕𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU

𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU
𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

+
𝒉𝒉𝒕𝒕

×
𝜹𝜹

=
𝟏𝟏

𝒉𝒉𝒕𝒕 = 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 𝒉𝒉𝒕𝒕 = 𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕
𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕 𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕

𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕)

RNN Residual RNN
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RNN  Differential Equations

𝒉𝒉𝒕𝒕𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU

𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU
𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

+
𝒉𝒉𝒕𝒕

×
𝜹𝜹

=
𝟏𝟏 𝒉𝒉𝒕𝒕−𝜹𝜹

W
eight

ReLU

𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

+
𝒉𝒉𝒕𝒕

×
𝜹𝜹
→
𝟎𝟎
+

�
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒉𝒉𝒕𝒕 = 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 𝒉𝒉𝒕𝒕 = 𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 𝒉𝒉𝒕𝒕 = 𝒉𝒉𝒕𝒕−𝜹𝜹 + �
𝒕𝒕−𝜹𝜹

𝒕𝒕

𝒇𝒇(𝒉𝒉,𝒙𝒙,𝜽𝜽, 𝝉𝝉)𝒅𝒅𝝉𝝉
𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕

𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕 𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕

𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕−𝒉𝒉𝒕𝒕−𝟏𝟏
𝜹𝜹

= 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 , 𝜹𝜹=1 𝒅𝒅𝒉𝒉𝒕𝒕
𝒅𝒅𝒕𝒕

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕

RNN Residual RNN Differential Equation RNN

15Pearlmutter1995. Gradient calculations for dynamic recurrent neural networks: A survey. TNN.

http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://ieeexplore.ieee.org/abstract/document/410363/
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Normalizing flowDifferential Equations
An invertible generative model
oGoal: X~𝑷𝑷 𝑘𝑘

Inference:𝑍𝑍 = 𝑓𝑓𝜃𝜃(𝑘𝑘)
oFrom complex to simple

Generation:𝑘𝑘 = 𝑓𝑓𝜃𝜃−1(𝑍𝑍)
oGenerate complex by invertible mapping

log𝑷𝑷 𝑘𝑘 = log𝑷𝑷(𝑍𝑍) + log | det(𝜕𝜕𝑓𝑓𝜃𝜃
𝜕𝜕𝜕𝜕

) |
oChange of variable formula
oExact maximum likelihood training

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

Inference Generation
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𝑷𝑷 𝑿𝑿 : 
Complex empirical distribution

𝑷𝑷 𝒁𝒁 :
Simple latent distribution 
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Normalizing flow  Differential Equations
Flow
oInference:𝑍𝑍𝑑𝑑+1 = 𝑓𝑓𝜃𝜃(𝑍𝑍𝑑𝑑) , Generation:𝑍𝑍𝑑𝑑 = 𝑓𝑓𝜃𝜃−1(𝑍𝑍𝑑𝑑+1)
olog𝑷𝑷 𝑍𝑍𝑑𝑑 = log𝑷𝑷(𝑍𝑍𝑑𝑑+1) + log | det(𝜕𝜕𝑓𝑓𝜃𝜃

𝜕𝜕𝜕𝜕
) |

Residual Flow
oInference:𝑍𝑍𝑑𝑑+1 = 𝑍𝑍𝑑𝑑 + 𝛿𝛿𝑓𝑓𝜃𝜃 𝑍𝑍𝑑𝑑 , Generation:𝑍𝑍𝑑𝑑 = (𝐼𝐼 + 𝛿𝛿𝑓𝑓𝜃𝜃)−1 𝑍𝑍𝑑𝑑+1 , 𝛿𝛿=1
olog𝑃𝑃𝑀𝑀 𝑍𝑍𝑑𝑑 = log𝑃𝑃𝜕𝜕(𝑍𝑍𝑑𝑑+1) + log | det(𝜕𝜕(𝐼𝐼+𝛿𝛿𝑓𝑓𝜃𝜃)

𝜕𝜕𝜕𝜕
) |

Differential Eq. Flow
oInference:𝑑𝑑𝜕𝜕(𝑑𝑑)

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝜃𝜃 𝑍𝑍, 𝑡𝑡 , Generation:𝑍𝑍 0 = 𝑍𝑍 𝑡𝑡 − ∫𝟎𝟎

𝒕𝒕 𝒇𝒇𝜽𝜽(𝒁𝒁, 𝝉𝝉)𝒅𝒅𝝉𝝉

o
𝒅𝒅 𝒍𝒍𝒐𝒐𝒍𝒍𝑷𝑷(𝒁𝒁(𝒕𝒕))

𝒅𝒅𝒕𝒕
= −𝒕𝒕𝒕𝒕( 𝒅𝒅𝒇𝒇

𝒅𝒅𝒁𝒁(𝒕𝒕)
)

Chen et al. 2019. Neural Ordinary 
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An example: NICE v.s. Differential NICE
 NICE or RealNVP
o splitting dimensions + residual flow updated alternately

 Split: 
oX= 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐
o 𝐙𝐙 = (𝐙𝐙𝟏𝟏, 𝐙𝐙𝟐𝟐)

 Add: 
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏 (save information for reverse)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐 + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟏𝟏) (Residual)
oReverse mapping:
𝑿𝑿𝟏𝟏 = 𝒁𝒁𝟏𝟏
𝑿𝑿𝟐𝟐 = 𝒁𝒁𝟐𝟐 − 𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

 Next layer by alternating update:
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏 + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟐𝟐) (Residual)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐 (save information for reverse)

 …

𝒅𝒅𝒁𝒁𝟏𝟏
𝒅𝒅𝒕𝒕
𝒅𝒅𝒁𝒁𝟐𝟐
𝒅𝒅𝒕𝒕

=
𝒇𝒇𝜽𝜽(𝒁𝒁𝟐𝟐)
𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

Hamiltonian Systems
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Dinh et al. 2014. Nice: Non-linear independent components estimation
Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

𝒁𝒁 = (𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐)

Split

Add

×L layers CNN
𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝒇𝒇

𝑿𝑿 = (𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐)
Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS.
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DEs  DNNS by Numerical Methods

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)𝒉𝒉𝒕𝒕+𝜹𝜹 = 𝒉𝒉𝒕𝒕 + �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉,𝜽𝜽, 𝝉𝝉)𝒅𝒅𝝉𝝉

Conv

ReLU

× 𝜹𝜹 = 𝟏𝟏

+

𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 → 𝟎𝟎+

+ �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)
𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝜹𝜹

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝜹𝜹𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕 , 𝜹𝜹 = 𝟏𝟏
output = input + step * rate of change

𝒅𝒅𝒉𝒉𝒕𝒕
𝒅𝒅𝒕𝒕

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕

Residual Net.Differential Equation Net.
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Numerical Methods:
Integrating DEs by discretization

Gif image from 
https://jmahaffy.sdsu.edu/courses/f00/math122/l
ectures/num_method_diff_equations/nummetho
d_diffeq.html

𝒉𝒉𝑛𝑛+𝟏𝟏 = 𝒉𝒉𝟎𝟎 + �
𝒕𝒕=𝟏𝟏

𝒏𝒏
𝜹𝜹𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕

𝜹𝜹

https://jmahaffy.sdsu.edu/courses/f00/math122/lectures/num_method_diff_equations/nummethod_diffeq.html


Why Such Connections
Deep Learning  Differential Equations
oAnalysis
Math analysis tools
Concepts in dynamic system and control: stability, robustness, complexity, 

resilience, etc.
oModeling Continuous-time process
Physical meaning. The laws of nature are expressed as differential equations.

Differential Equations  Deep Learning
Design

There are many dynamical systems and differential equations.
Discretization of continuous time-varying neural dynamics  Deep Neural Networks
DNNs implemented by modern auto-differentiation softwares are more flexible, 
expressive and efficient

Generative models and Invertible structures

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 20



Why Such Connections
Deep Learning  Differential Equations
oAnalysis
Math analysis tools
Concepts in dynamic system and control: stability, robustness, complexity, 

resilience, etc.
oModeling Continuous-time process
Physical meaning. The laws of nature are expressed as differential equations.

Differential Equations  Deep Learning
oDesign
There are many dynamical systems and differential equations.
Discretization of continuous time-varying dynamics  Deep Neural Networks
DNNs implemented by modern auto-differentiation softwares are more flexible, 

expressive and efficient
oGenerative models and Invertible structures
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Differential Deep Learning on Graphs
Graphs and Differential Equations are general tools to 

describe structures and dynamics of complex systems
Inspired by the Differential Equations, we can design 

and analyze Deep Models
For applications on graphs (our focus), including:
oMolecular graph generation
oLearning dynamics on graphs
oMechanism discovery

in a data-driven manner
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 22



Molecular Graph Generation
Goal: To generate novel molecules with optimized 

properties
Graph Analysis tasks
oGraph generation: G ~P(𝐺𝐺)
oGraph property prediction: 𝑓𝑓(𝐺𝐺)
oGraph optimization: G G′ and maximizing 𝑓𝑓 𝐺𝐺′ − 𝑓𝑓(𝐺𝐺)

P(    )? f(    )=?
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Learning Dynamics on Graphs
Goal: To predict temporal change or final states of 

complex systems
Graph Analysis tasks
oContinuous-time network dynamics prediction 𝑘𝑘(𝑡𝑡)
oStructured sequence prediction 𝑘𝑘[𝑡𝑡 + 𝑘𝑘]
oNode classification/regression  Y(𝑘𝑘)

?
Graph Dynamics of each nodes

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 24

+ Dynamic
Process

Adjacency Matrix



Mechanism Discovery
Goals: To find dynamical laws of complex systems
Graph Analysis tasks
oDensity estimation vs. mechanism discovery
oData-driven discovery of differential equations

?
Image from http://networksciencebook.com/chapter/4#hubs
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𝒅𝒅𝑿𝑿
𝒅𝒅𝒕𝒕

http://networksciencebook.com/chapter/4#hubs


Why Is It Hard?
Complex combinatorial structures of graphs
oDue to complex combinations of node and edge sets
oNodes and edges can have multiple types
Node types: C, H, O, etc., Edge types: single, double, triple bond.
oComplexity: the scale of drug-like graphs ~ 1060
oDeep models are majorly designed for regular grid structures 
(image or text)

vs.
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Why Is It Hard?

vec

𝑓𝑓:𝐺𝐺 → ℝ𝑑𝑑
ℝ𝑑𝑑

vec

ℝ𝑑𝑑 𝑓𝑓:ℝ𝑑𝑑 → 𝐺𝐺

?

?
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Encoding graph is hard, Decoding graph is much 
harder
oEncoding, embedding, inference with graph input

oDecoding, generation with graph output
E.g. Chemically valid molecular graphs



Why Is It Hard?
Complex nonlinear dynamics on graphs

+ 

+ 

+ 

Linear Dynamics

Linear Dynamics

Non-Linear Dynamics

𝒇𝒇(𝑿𝑿 𝒕𝒕 ,𝑮𝑮,𝜽𝜽, 𝒕𝒕)

?
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This Tutorial
Molecular Graph Generation: to generate novel molecules with 

optimized properties
oGraph generation
oGraph property prediction
oGraph optimization
Learning Dynamics on Graphs: to predict temporal change or final 

states of complex systems
oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression
Mechanism discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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This Tutorial
www.calvinzang.com/DDLG_AAAI_2020.html
AAAI-2020
Friday, February 7, 2020, 2:00 PM -6:00 PM
Sutton North, Hilton New York Midtown, NYC
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http://www.calvinzang.com/DDLG_AAAI_2020.html
https://aaai.org/Conferences/AAAI-20/


Differential Deep Learning on 
Graphs and its Applications

Chengxi Zang and Fei Wang
Weill Cornell Medicine
www.calvinzang.com
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Thank You!

http://www.calvinzang.com/
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