

Differential Deep Learning on Graphs and its Applications

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com

This Tutorial

www.calvinzang.com/DDLG_AAAI_2020.html

AAAI-2020

Friday, February 7, 2020, 2:00 PM -6:00 PM

Sutton North, Hilton New York Midtown, NYC

Differential Deep Learning on Graphs

□<u>Graphs</u> and <u>Differential Equations</u> are general tools to describe <u>structures and dynamics</u> of <u>complex systems</u>

Linked objects: nodes + edges Network

Linked objects: nodes + edges oE.g.: Internet, social networks, molecules, etc.

Node: users, Edge: Social links

Node: Atoms, Edge: Bonds

Internet Images from

Node: IPs, Edge: Hyperlinks

https://en.wikipedia.org/wiki/Network theory DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

Equations which relates functions (physical quantities) and their derivatives (rates of change), e.g. oe.g.Population growth

♦ Exponential growth: $\frac{dx}{dt} = ax \rightarrow x(t) = Ce^{at} \text{ solution by integrating}$ Power-law growth: $\frac{dx}{dt} = a\frac{x}{t} \rightarrow x(t) = Ct^{a} \text{ solution by integrating}$

Equations which relates functions (physical quantities) and their derivatives (rates of change), e.g. oe.g.Population growth

♦ Exponential growth: $\frac{dx}{dt} = ax \rightarrow x(t) = Ce^{at} \text{ solution by integrating}$ Power-law growth: $\frac{dx}{dt} = a\frac{x}{t} \rightarrow x(t) = Ct^{a} \text{ solution by integrating}$

Differential Equation System

•A system of differential equations •Newton's law of cooling: $\frac{dX}{dt} = -kLX$ •Laplacian matrix: L=D-A, A: adjacency matrix

Why Graphs and Differential Equations?

Question (Social network analysis): How does information spread in social networks? How does information flow form complex structural patterns?

Image from: **Zang** et al. 2019. <u>Uncovering</u> Pattern Formation of Information Flow. *KDD*.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

Why Graphs and Differential Equations?

Question (Urban computing): Can we predict and control traffic flows on road networks?

Why Graphs and Differential Equations?

Question (Drug discovery): Can we predict molecular properties? Can we design novel drug molecule with optimized properties?

Differential Deep Learning on Graphs

Graphs and Differential Equations are general tools to describe structures and dynamics of complex systems

□Inspired by the <u>differential equations</u>, we can design and analyze <u>deep models</u>

Residual Net. → **Differential Equations**

Residual Net. → **Differential Equations**

RNN → Differential Equations

RNN → Differential Equations

Normalizing flow→Differential Equations

- •Goal: X~P(X)
- □ Inference: $Z = f_{\theta}(X)$ ◦From complex to simple

Generation: $X = f_{\theta}^{-1}(Z)$

oGenerate complex by invertible mapping

□ log
$$P(X) = \log P(Z) + \log |\det(\frac{\partial f_{\theta}}{\partial Z})|$$

•Change of variable formula

Exact maximum likelihood training

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

Normalizing flow → Differential Equations

oInference:
$$Z_{t+1} = f_{\theta}(Z_t)$$
, Generation: $Z_t = f_{\theta}^{-1}(Z_{t+1})$
olog $P(Z_t) = \log P(Z_{t+1}) + \log |\det(\frac{\partial f_{\theta}}{\partial Z})|$

Residual Flow

oInference: $Z_{t+1} = Z_t + \delta f_{\theta}(Z_t)$, Generation: $Z_t = (I + \delta f_{\theta})^{-1} (Z_{t+1}), \delta = 1$ olog $P_M(Z_t) = \log P_Z(Z_{t+1}) + \log |\det(\frac{\partial (I + \delta f_{\theta})}{\partial Z})|$

Differential Eq. Flow

oInference:
$$\frac{dZ(t)}{dt} = f_{\theta}(Z, t)$$
, Generation: $Z(0) = Z(t) - \int_{0}^{t} f_{\theta}(Z, \tau) d\tau$
o $\frac{d \log P(Z(t))}{dt} = -tr(\frac{df}{dZ(t)})$

Chen et al. 2019. <u>Neural Ordinary</u> <u>Differential Equations</u>. *NeurIPS*.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

An example: NICE v.s. Differential NICE

□ NICE or RealNVP

splitting dimensions + residual flow updated alternately

Dinh et al. 2014. <u>Nice: Non-linear independent components estimation</u> Dinh et al. 2017. <u>Density Estimation using Real NVP.</u> *ICLR*. **Chen** et al. 2019. <u>Neural Ordinary</u> <u>Differential Equations.</u> *NeurIPS*.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

DEs → DNNS by Numerical Methods

Residual Net.

 $h_{t+1} = h_t + f(h_t, \theta_t)$ $h_{t+1} = h_t + \delta f(h_t, \theta_t), \delta = 1$ output = input + step * rate of change h_t $f(h_t, \theta_t)$

+

 h_{t+1}

Conv ReLU $\times \delta = 1$

Numerical Methods: Integrating DEs by discretization

$$h_{n+1} = h_0 + \sum_{t=1}^n \delta f(h_t, \theta_t)$$

Gif image from <u>https://jmahaffy.sdsu.edu/courses/f00/math122/l</u> <u>ectures/num_method_diff_equations/nummetho</u> <u>d_diffeq.html</u> 19

Why Such Connections

□Deep Learning → Differential Equations

oAnalysis

Math analysis tools

- Concepts in dynamic system and control: stability, robustness, complexity, resilience, etc.
- Modeling Continuous-time process

Physical meaning. The laws of nature are expressed as differential equations.

□Differential Equations → Deep Learning

Why Such Connections

$\Box Deep Learning \rightarrow Differential Equations$

oAnalysis

Math analysis tools

Concepts in dynamic system and control: stability, robustness, complexity, resilience, etc.

Modeling Continuous-time process

Physical meaning. The laws of nature are expressed as differential equations.

□Differential Equations → Deep Learning

oDesign

There are many dynamical systems and differential equations.

♦ Discretization of continuous time-varying dynamics → Deep Neural Networks

DNNs implemented by modern auto-differentiation softwares are more flexible, expressive and efficient

oGenerative models and Invertible structures

Differential Deep Learning on Graphs

- Graphs and Differential Equations are general tools to describe structures and dynamics of complex systems
- Inspired by the Differential Equations, we can design and analyze Deep Models
- For <u>applications on graphs</u> (our focus), including:
 Molecular graph generation
 Learning dynamics on graphs
 Mechanism discovery

in a data-driven manner

Molecular Graph Generation

Goal: To generate novel molecules with optimized properties

Graph Analysis tasks

•Graph generation: $G \sim P(G)$ •Graph property prediction: f(G)•Graph optimization: $G \rightarrow G'$ and maximizing f(G') - f(G)

Learning Dynamics on Graphs

Goal: To predict temporal change or final states of complex systems

Graph Analysis tasks

•Continuous-time network dynamics prediction X(t)•Structured sequence prediction X[t + k]•Node classification/regression Y(X)

Goals: To find dynamical laws of complex systems

Graph Analysis tasks

Density estimation vs. mechanism discovery
 Data-driven discovery of differential equations

Image from http://networksciencebook.com/chapter/4#hubs

Complex combinatorial structures of graphs

- Due to complex combinations of node and edge sets
 Nodes and edges can have multiple types
- Node types: C, H, O, etc., Edge types: single, double, triple bond.
- oComplexity: the scale of drug-like graphs $\sim 10^{60}$
- Deep models are majorly designed for regular grid structures (image or text)

VS.

Why Is It Hard?

Encoding graph is hard, Decoding graph is much harder

•Encoding, embedding, inference with graph input

Why Is It Hard?

This Tutorial

Molecular Graph Generation: to generate novel molecules with

optimized properties oGraph generation oGraph property prediction oGraph optimization

Learning Dynamics on Graphs: to predict temporal change or final states of complex systems Continuous-time network dynamics prediction Structured sequence prediction Node classification/regression

Mechanism discovery: to find dynamical laws of complex systems
 Density Estimation vs. Mechanism Discovery
 Data-driven discovery of differential equations

This Tutorial

www.calvinzang.com/DDLG_AAAI_2020.html

AAAI-2020

Friday, February 7, 2020, 2:00 PM -6:00 PM

Sutton North, Hilton New York Midtown, NYC

Differential Deep Learning on Graphs and its Applications

Chengxi Zang and Fei Wang Weill Cornell Medicine <u>www.calvinzang.com</u>