

Differential Deep Learning on Graphs and its Applications

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com

This Tutorial

- www.calvinzang.com/DDLG_AAAI_2020.html
- **□**AAAI-2020
- ☐ Friday, February 7, 2020, 2:00 PM -6:00 PM
- □Sutton North, Hilton New York Midtown, NYC

This Tutorial

- Molecular Graph Generation: to generate novel molecules with optimized properties
 - Graph generation
 - Graph property prediction
 - Graph optimization
- Learning Dynamics on Graphs: to predict temporal change or final states of complex systems
 - Continuous-time network dynamics prediction
 - Structured sequence prediction
 - Node classification/regression
- Mechanism Discovery: to find dynamical laws of complex systems
 - Density Estimation vs. Mechanism Discovery
 - Data-driven discovery of differential equations

Part 1: MoFlow: An Invertible Flow Model for Generating Molecular Graphs

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com

Background: Drug Discovery

Lead Discovery

1.5 years

Lead
Optimization
3 years

Preclinical 1.5 years Molecule for human Clinical trial 4-7 years

Screen millions of functional molecules to inform design

Design, make, test
1000s new
molecules with
optimized property

In-vitro and in-vivo experiments; synthesis

Phase I, II, III, Launch

Challenges of Drug Discovery

Lead Discovery

1.5 years

Lead
Optimization
3 years

Preclinical
1.5 years

Molecule for human Clinical trial

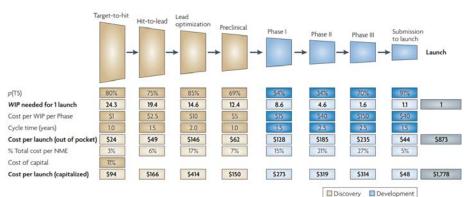


Figure 2 | R&D model yielding costs to successfully discover and develop a single new molecular entity. The mode

1. Lengthy, costly, & with high failure rate

- ○1.5+3+1.5 = 6 years before clinical trail
- o33% of total cost of medicine development
- oClinical success ~12%, poor translation in patients
- OHow to accelerate the process and reduce the cost and failure rate of such a sequential pipeline?

Challenges of Drug Discovery

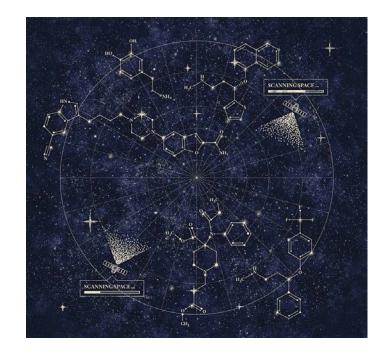
Lead Discovery

1.5 years

Lead
Optimization
3 years

Preclinical
1.5 years

Molecule for human Clinical trial



2. Big Chemical Data but largely unexplored

- oThe scale of potential drug-like chemical data: $10^{33} \sim 10^{60}$
- Sampled points in existing chemical database: 10⁶
- OHow to explore such a big chemical space and generate novel molecule candidates?

Challenges of Drug Discovery

Lead Discovery

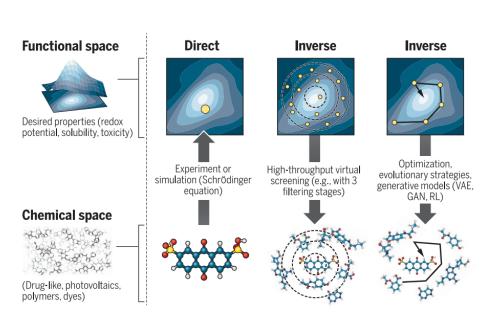
1.5 years

Lead
Optimization

3 years

Preclinical
1.5 years

Molecule for human Clinical trial



- 3. Evaluation and optimization over sequence or graphs
 - ODiscrete Molecule Data: smiles -> sequence, molecular graphs -> graph, etc.
 - Evaluation: Mapping from discrete molecules to properties.
 - Optimization: Generating novel molecules with optimized properties.
 - OHow to search for discrete molecules guided by the target property in the chemical space?

Drug Discovery Driven by Data and Al

Challenges

Ohow to accelerate the process and reduce the cost and failure rate of such a sequential pipeline?

- OHow to explore such a big chemical space and generate novel molecule candidates?
- Ohow to search for discrete molecules guided by the target property in the chemical space?

Deep Learning methods driven by data

- Better than human discovery, hopefully
- A generative model which approximately represents the large chemical space
- Search algorithm between the chemical space and property space.

Problem Definition

□Input:

- $\circ \{M_1, M_2, ..., M_N\}$: Molecule data samples
- $\circ f(M)$: Some property functions of molecules

■Method:

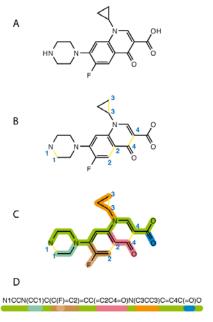
- $\circ \widehat{M} \sim P_{M}(M)$: A generative model (distribution) of molecules
- •Searching molecules in $P_{\mathbf{M}}(M)$ guided by f(M).

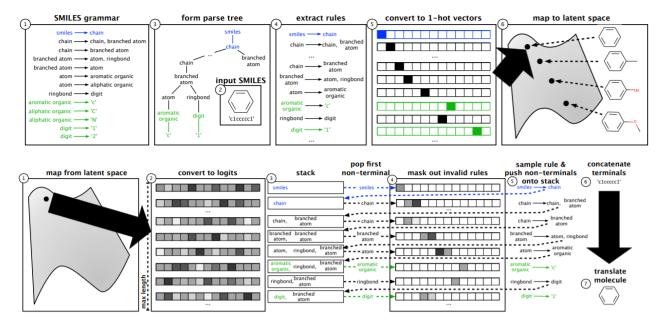
□Output:

oNovel molecules $\{M_{N+1}, M_{N+2}, ...\}$ with desired properties.

■Sequence-based VAE model

- SMILES (Simplified molecular-input line-entry system) string
- Grammar Variational Autoencoders (Grammar-VAE)
- Limitation: Sequences lose structural information





☐ Graph-based VAE model

- Structural information of molecules is better kept by graphs
 - E.g., similarity, chemical validity
- Junction Tree Variational Autoencoder (JT-VAE)
- Limitation
 - Only for tree-structured molecules.
 - Ciclosporin: Large circle

N N N S F N N S

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1 Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

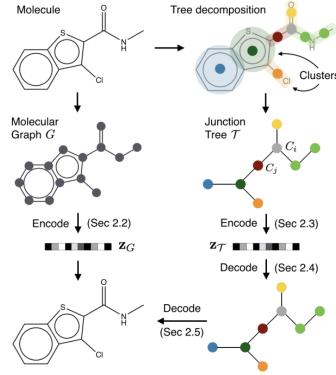


Image from: **Jin** et al. 2018. <u>Junction Tree</u>

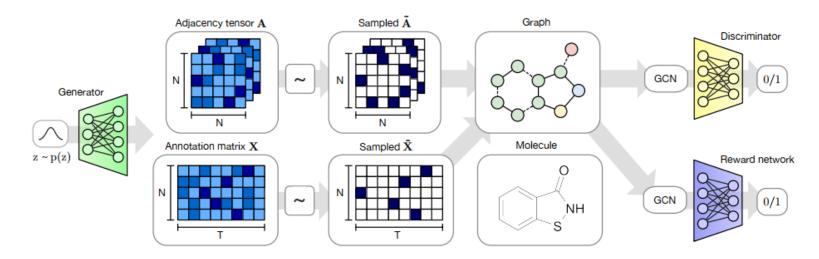
<u>Variational Autoencoder for Molecular Graph</u>

Generation. *ICML*13

https://en.wikipedia.org/wiki/Ciclosporin

□GAN-based models

- Molecular Generative adversarial network (MolGAN)
- Limitation
 - ♦No chemical validity guarantee; Mode collapse->tend to generate duplicated molecules → few novel molecules



□ Autoregressive-based models

- Graph Convolutional Policy Network (GCPN)
- Graph Autoregressive Flow model (GraphAF)
- Reject sampling for validity + Reinforcement Learning for optimization
- oLimitations
 - Sequential generation, tend to generate long chains.

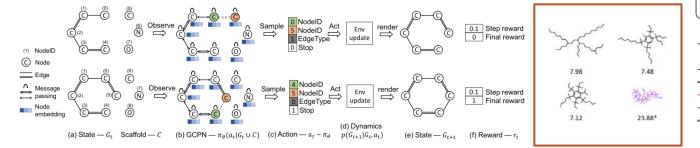


Image from: **You** et al. 2018. <u>Graph Convolutional Policy Network</u> <u>for Goal-Directed Molecular Graph Generation</u>. *NeurIPS*

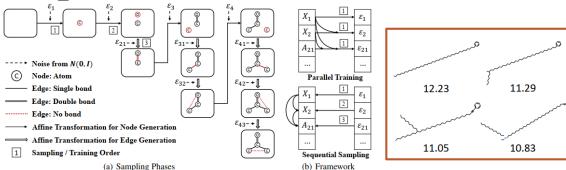
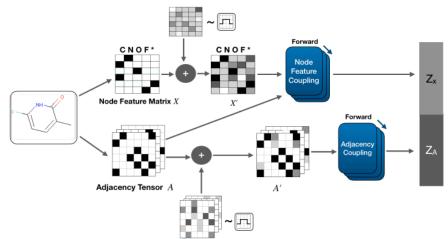


Image from: **Shi** et al. <u>2020. GraphAF: a Flow-based</u>
Autoregressive Model for Molecular Graph Generation. *ICLR*

15

□Flow-based models

- GraphNVP: Graph Real-valued Non-Volume Preserving flow
 - Only use add coupling
- Limitations
 - Unstable deep structures, No chemical validity guarantee, Few novel molecules



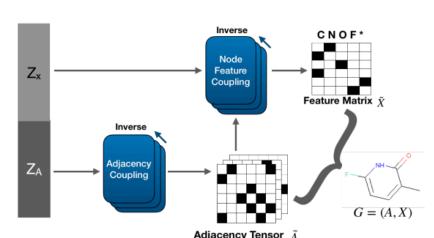


Image from: Madhawa et al. 2019. GraphNVP: An Invertible Flow Model for Generating Molecular Graphs

□Classified by Data:

- Sequence: SMILES
- •Graph: molecular graphs

□Classified by Deep Generative Models:

- Autoregressive Models (AR)
- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)
- Normalizing Flow Models (Flow)

Classified by Search & Optimization

- Gradient ascend
- Reinforcement learning

17

Our Choice

□Classified by Data:

- Sequence: SMILES
- **OGraph:** molecular graphs

□Classified by Deep Generative Models:

- Autoregressive Models (AR)
- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)
- ONormalizing Flow Models (Flow)

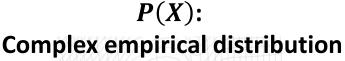
Classified by Search & Optimization

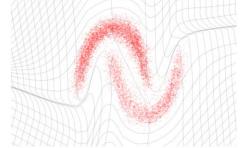
- Gradient ascend
- Reinforcement learning

Related works: Basics of Normalizing Flow

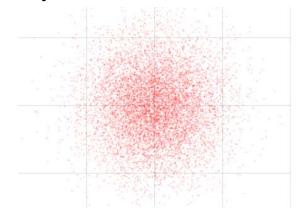
- An invertible generative model
 - oGoal: $X \sim P(X)$
- \square Inference: $Z = f_{\theta}(X)$
 - o From complex to simple, e.g. Z is Gaussian
- **□** Generation: $X = f_{\theta}^{-1}(Z)$
 - Generate complex by invertible mapping
- Exact Maximum Likelihood Training
 - •Change of variable $\log P(X) = \log P(Z) + \log |\det(\frac{\partial f_{\theta}}{\partial Z})|$
 - $\underset{\theta}{\circ} \operatorname{argmax} E_{M \sim P_{data}}[\log P_{M}(M; \theta)]$
- **Network structures:**
 - $\circ f_{\theta}$: invertible DNNs, each layer is invertible
 - \circ Computing $\det(\frac{\partial f_{\theta}}{\partial Z})$ should be efficient

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.





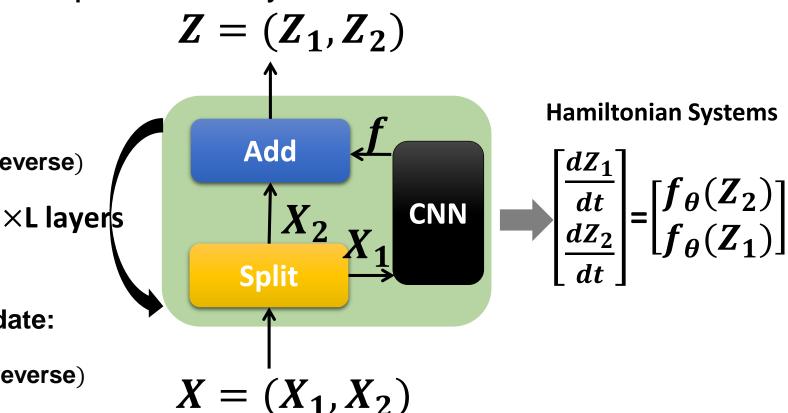
P(Z): Simple latent distribution



Related works: NICE Model

- NICE: Non-linear Independent Components Estimation
 - splitting dimensions + residual flow updated alternately
- □ Split:
 - $\circ X = (X_1, X_2)$
 - ${\overset{\circ}{\circ}} \, Z = (Z_1, Z_2)$
- ☐ Add:
 - $otin Z_1 = X_1$ (save information for reverse)

 - o Reverse mapping:
 - $Arrow X_1 = Z_1$
 - $X_2 = Z_2 f_\theta(Z_1)$
- Next layer by alternating update:
 - $\circ Z_1 = X_1 + f_{\theta}(X_2) \text{ (Residual)}$
 - $otin Z_2 = X_2$ (save information for reverse)



Dinh et al. 2014. Nice: Non-linear independent components estimation Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

Chen et al. 2019. <u>Neural Ordinary</u> <u>Differential Equations</u>. *NeurIPS*.

Related works: RealNVP Model

- RealNVP: Real-valued Non-Volume Preserving flow
 - splitting dimensions + affine updated alternately
- □ Split:
 - $\circ X = (X_1, X_2)$
 - ${\overset{\circ}{\circ}} \, Z = (Z_1, Z_2)$
- ☐ Affine:
 - $otin Z_1 = X_1$ (save information for reverse)
 - $\circ Z_2 = X_2 e^{s_{\theta}(X_1)} + f_{\theta}(X_1) \text{ (with scale)}$
 - o Reverse mapping:
 - $•X_1 = Z_1$
- Next layer by alternating update:

 - $otin Z_2 = X_2$ (save information for reverse)

everse)
cale) X_2 X_1 X_1 X_2 X_1 X_1 X_2 X_1 X_2 X_1 X_2 X_1 X_1 X_2 X_1 X_1 X_2 X_1 X_2 X_1 X_1 X_2 X_1 X_1 X_2 X_1 X_2 X_1 X_2 X_1 X_1 X_1 X_2 X_1 X_1 X_1 X_2 X_1 X_1 X_2 X_1 X_1 X_1 X_1 X_1 X_2 X_1 X_1 X_1 X_2 X_1 X_1 X_1 X_2 X_1 X_1 X_1 X_1 X_1 X_2 X_1 X_1 X_1 X_1 X_1 X_1 X_1 X_1 $X_$

Dinh et al. 2014. Nice: Non-linear independent components estimation Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

Chen et al. 2019. <u>Neural Ordinary</u> <u>Differential Equations.</u> *NeurIPS*.

 $X=(X_1,X_2)$

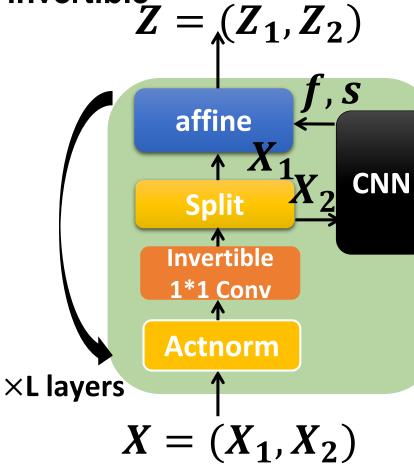
Related works: Glow Model

Glow: Generative flow with invertible 1*1 convolutions

- **□** Actnorm:
 - Stable dynamics
 - $\circ B = \frac{B-\mu}{\sqrt{\sigma^2 + \epsilon}}$ each channel over batch
- **□** Invertible 1*1 convolution:
 - Expressive power
 - $o \mathbb{R}^{c \times n \times n} \times \mathbb{R}^{c \times c} \to \mathbb{R}^{c \times n \times n}$
- Affine:

$$\circ Z_1 = X_1$$

$$\circ Z_2 = X_2 e^{s_{\theta}(X_1)} + f_{\theta}(X_1)$$



Hamiltonian Systems

$$= \left[\frac{\frac{dZ_1}{dt}}{\frac{dZ_2}{dt}} \right] = \left[f_{\theta}(Z_2) \right]$$

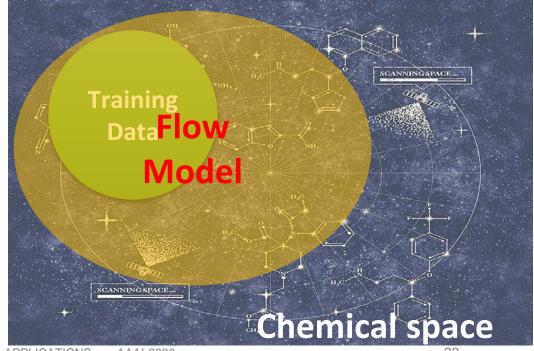
Chen et al. 2019. <u>Neural Ordinary</u> Differential Equations. *NeurIPS*.

Why Flow Frameworks

■Invertible mappings

- Potentials for generating more molecules
- oVAE, GAN, AR are not invertible
- oFlow learns a strict superset and represents chemical space better

Training Model or Data VAE, GAN, AR Model Data



Why Flow Frameworks

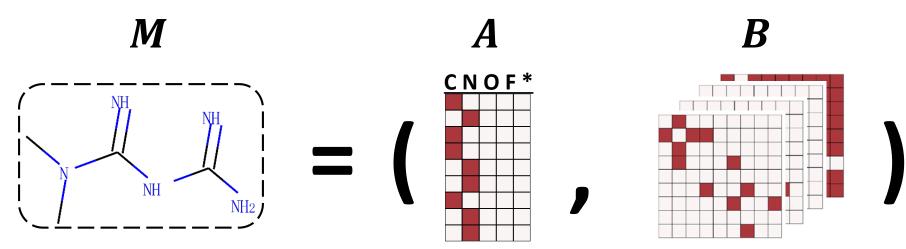
- Exact maximum likelihood training
 - oVAE,GAN are not
- ■Efficient one-shot inference and generation
 - Capturing molecular structures in a holistic way
 - OAR is step-by-step
- **□**Better performance shown later

24

Our MoFlow Model

■ Molecular Graph

- Molecules consist of atoms and bonds
- oMolecule = (Atom, Bond)
- \circ **A**tom ∈ $\{0,1\}^{n\times k}$, n Nodes in k (atom) types
- observe B ond ∈ $\{0,1\}^{c \times n \times n}$, Edges in c (bond) types

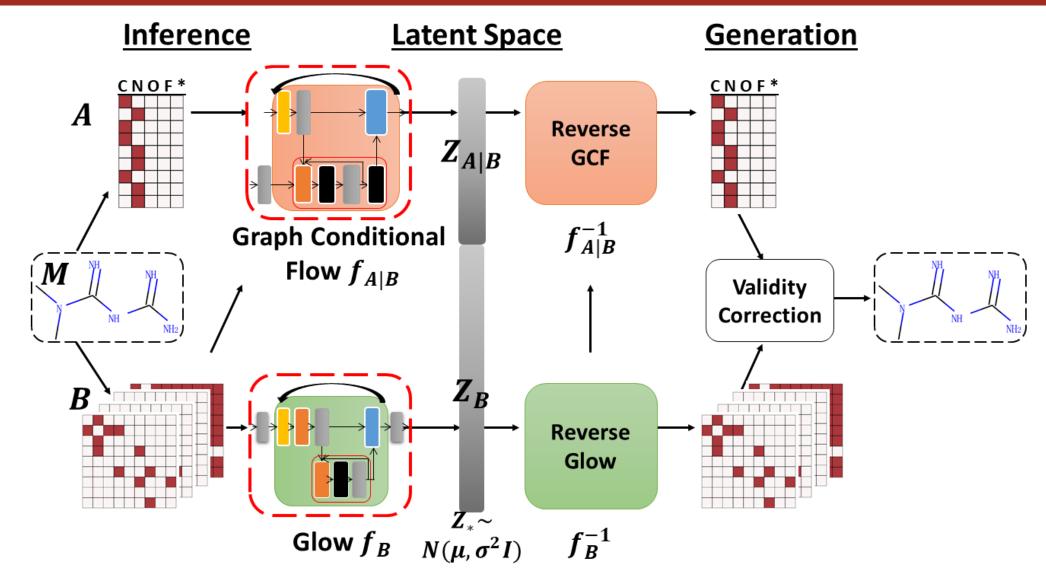


Our MoFlow Model

■MoFlow:

- <u>M</u>olecule=(<u>A</u>tom, <u>B</u>ond) How to model intrinsic atom-bond structures of molecule?
- $\circ P_M(M) = P_M((A,B)) \approx P_{A|B}(A|B)P_B(B)$
- oAny flow model $f_B(B)$ for bonds $P_B(B)$
 - *****Generating graph skeleton by $P_B(B)$
- oGraph conditional flow $f_{A|B}(A|B)$ for atoms given bonds $P_{A|B}(A|B)$
 - **Generating nodes given graph skeleton by** $P_{A|B}(A|B)$
- Assembling atom and bonds with validity correction

The Generative Framework



A variant of Glow for Bond

Squeeze

$$\circ X \in \mathbb{R}^{c \times n \times n} \to \mathbb{R}^{ck^2 \times \frac{n}{k} \times \frac{n}{k}}$$

Actnorm:

- Stable dynamics
- o $B = \frac{B-\mu}{\sqrt{\sigma^2 + \epsilon}}$ each channel over batch

■ Invertible 1*1 convolution:

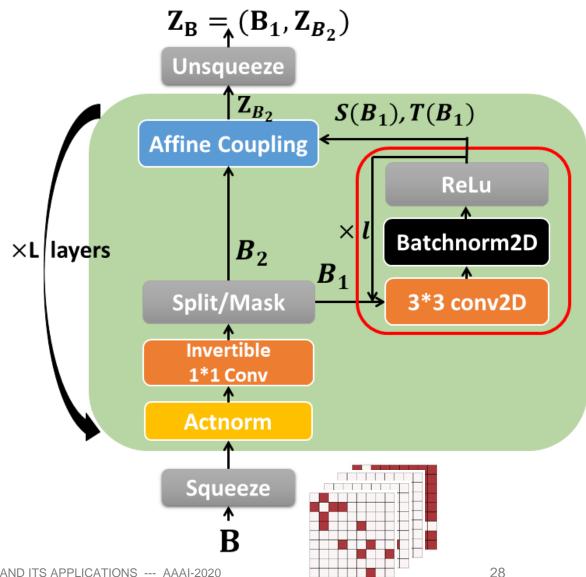
- Expressive power
- $\circ \mathbb{R}^{c \times n \times n} \times \mathbb{R}^{c \times c} \to \mathbb{R}^{c \times n \times n}$

□ Split:

- Discretization of Hamiltonian system
- \circ **B**= (B_1 , B_2)
- $\mathbf{O} \mathbf{Z} = (\mathbf{Z}_{B1}, \mathbf{Z}_{B2})$

Affine coupling:

- Stable (batchnorm2D, Sigmoid) and expressive power (Affine)
- $o Z_{B1} = B_1$
- $\circ Z_{B2} = B_2 \odot Sigmoid(S_{\theta}(B_1)) + T_{\theta}(B_1)$



Graph Conditional Flow For Atoms

Actnorm2D:

- Stable dynamics
- o $B = \frac{B \mu}{\sqrt{\sigma^2 + \epsilon}}$ each row over batch

□ Split:

- Discretization of Hamiltonian system on Graphs
- \circ A= (A_1, A_2) by each row
- $\circ Z = (Z_{A1|B}, Z_{A2|B})$

Graphnorm

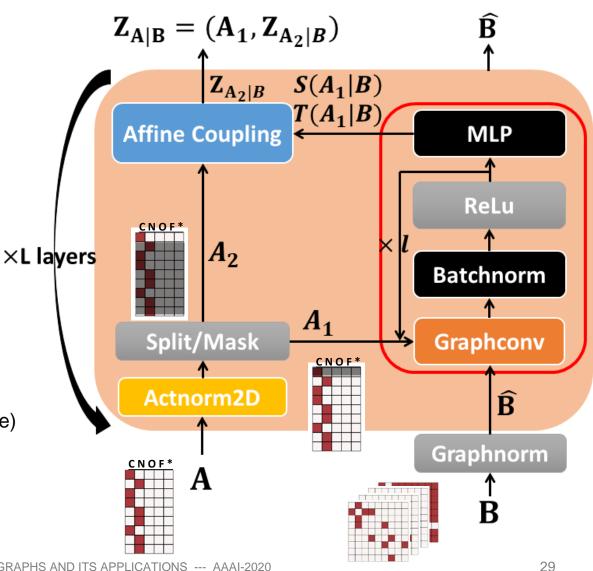
 \circ $\widehat{B}_i = D^{-1}B_i$, $D = \sum_{c,i} B_{c,i,j}$ in-degree over all channels

□ GraphConv(A|B)

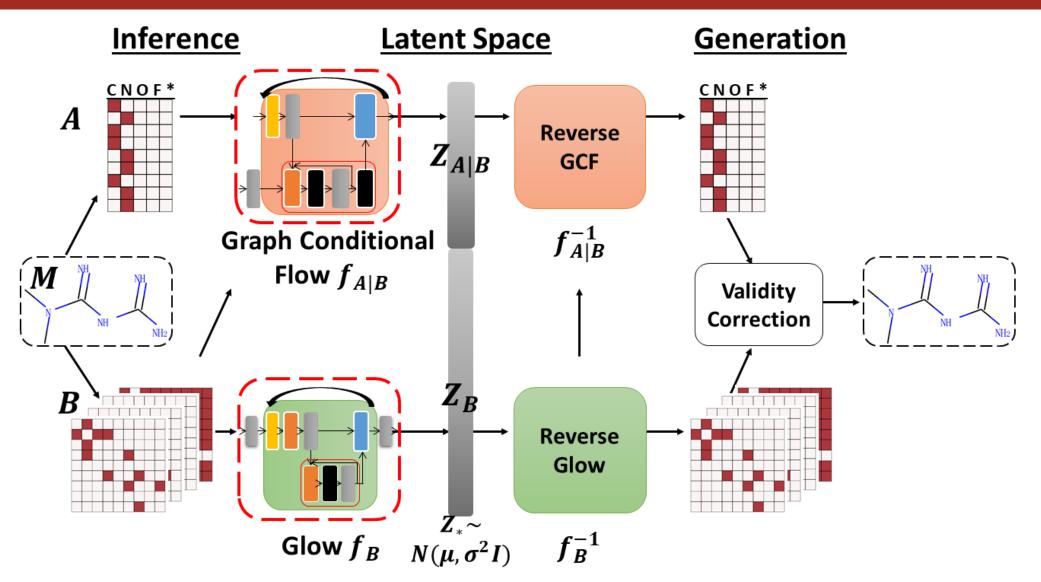
- $\circ \sum_{i=1}^{c} \widehat{B}_{i}(M \odot A) W_{i} + (M \odot A) W_{0}$
- update each row by the remaining rows

■ Affine coupling:

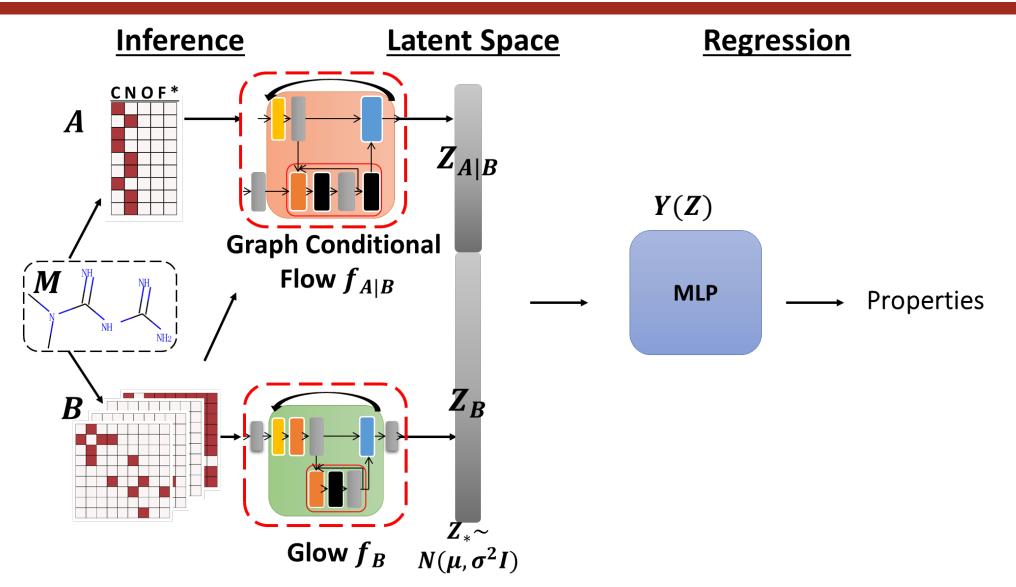
- Stable (batchnorm, Sigmoid) and expressive power (Affine)
- o $Z_{A1|B} = A_1$
- $\circ Z_{A2|B} = A_2 \odot Sigmoid(S_{\theta}(A_1|B)) + T_{\theta}(A_1|B)$



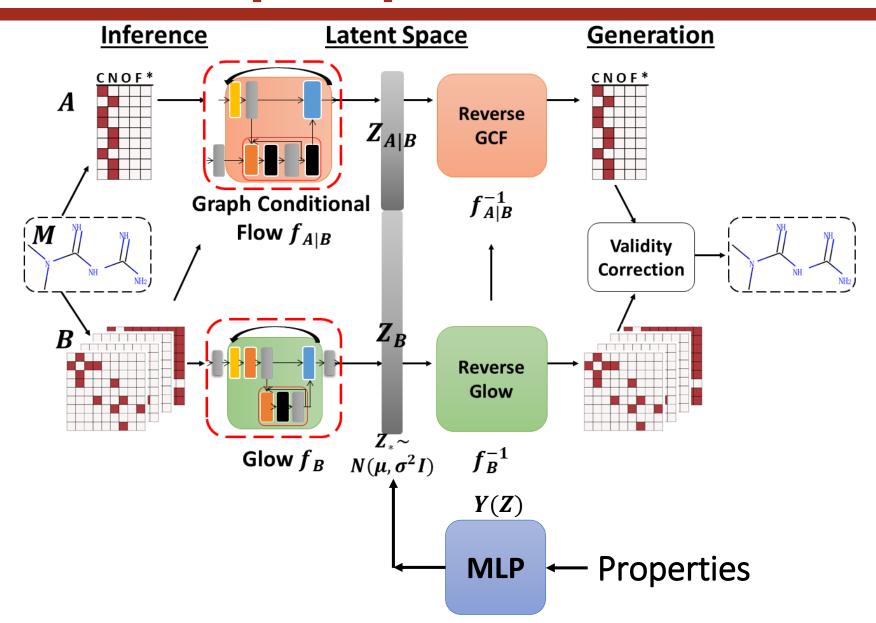
Molecular Graph Generation



Graph Property Prediction



Molecular Graph Optimization



Validity Correction

■Valid molecules: valency constraints

- $\circ \sum_{c,j} B(c,i,j) \leq Valency(Atom_i) + Formal_Charge$
- oC: 4, O:2, O+:3

■Valid Correction

- •While checking valency constraints:
 - If follows constraints:
 - Return the greatest connected component
 - Else:
 - Delete unnecessary bond or add charge to atoms according to rules

Experiments

- 1. Molecular Generation & Reconstruction
- 2. Visualization of Continuous Latent Space
- 3. Property Optimization
- 4. Constrained Property Optimization

EXP1: Molecular Generation & Reconstruction

□The Problem:

- oInput: $\{M_1, M_2, ...\}$ molecules
- oModel
 - ❖ P_M Learned molecular generative model
 - ❖Generation: $M = f^{-1}(Z)$, Z follows isotropic Gaussian
 - Reconstruction: Z = f(M) and $M = f^{-1}(Z)$
- •Goal: To generate valid & unique & novel molecules

□Datasets:

C

	#Graphs	#Nodes	#Node/Atom Types	#Edge/Bond Types
QM9	134K	9	4	3
ZINC	250K	38	9	3

EXP1: Molecular Generation & Reconstruction

Evaluation metrics:

- Validity: %chemically valid molecules in all the generated molecules
- 2. Validity without check/correction
- 3. <u>Uniqueness</u>: %chemically valid and unique molecules in all the generated molecules
- 4. Novelty: %generated valid molecules not in training dataset
- 5. Reconstruction rate: % training dataset which can be reconstructed from their latent representations
- N.U.V.: %novel, unique and valid molecules in all the generated molecules

EXP1: Molecular Generation & Reconstruction

- More novel & unique & valid molecules
 - than previous models
- 100% Reconstruction
 - Strict superset of training dataset
- Better validity without check
 - Than AR models. Oneshot models, a holistic way
- □ →Our MoFlow represents and explores the chemical space better!

Table 1: Generative performance on QM9

		% Validity	% Validity w/o check	% Uniqueness	% Novelty	% N.U.V.	% Reconstruct
_	GraphNVP	83.1 ± 0.5	-	99.2 ± 0.3	58.2 ± 1.9	47.97	100
	GRF	84.5 ± 0.70	-	66.0 ± 1.15	58.6 ± 0.82	32.68	100
_	GraphAF	100	67	94.51	88.83	83.95	100
	MoFlow	100.00 ± 0.00	95.74 ± 0.65	99.48 ± 0.33	98.69 ± 0.39	98.18 ± 0.53	100.00 ± 0.00

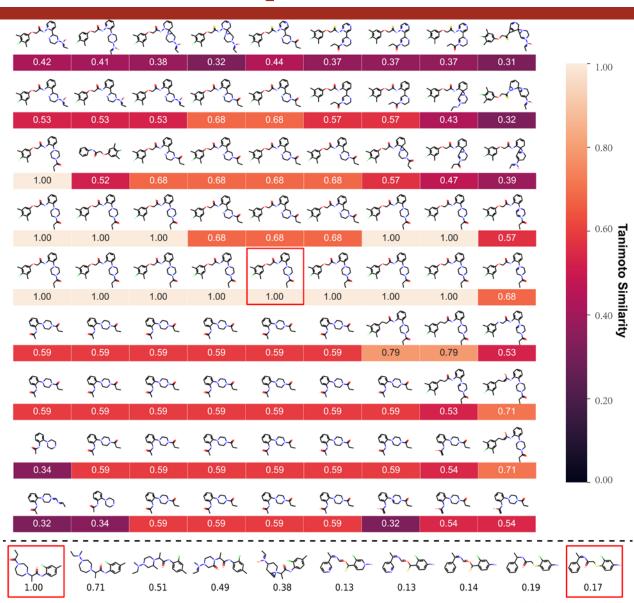
Table 2: Generative performance on Zinc250k

у ₋		% Validity	% Validity w/o check	% Uniqueness	% Novelty	% N.U.V.	% Reconstruct
-	JT-VAE	100	-	100	100	100	76.7
	GCPN	100	20	99.97	100	99.97	-
	MRNN	100	65	99.89	100	99.89	-
	GraphNVP	42.6 ± 1.6	-	94.8 ± 0.6	100	40.38	100
	GRF	73.4 ± 0.62	-	53.7 ± 2.13	100	39.42	100
	GraphAF	100	68	99.10	100	99.10	100
	MoFlow	100.00 ± 0.00	81.94 ± 0.45	99.94 ± 0.05	100.00 ± 0.00	99.94 ± 0.05	100.00 ± 0.00

EXP2: Visualization of latent space

□ Embedding molecular graphs into continuous latent space

- Grid interpolation around one seed molecule
 - ❖Smooth latent space ←→ Similar chemical structures (Tanimoto similarity)
- Linear interpolation between two molecules
 - Changing trajectory from one to another



EXP3: Property Optimization

- □ To Generate Novel
 Molecules with the best
 Quantitative Estimate
 of Druglikeness (QED)
 scores as many as
 possible
 - Searching latent space by gradient ascend
- Much more molecules with top QED scores

Table 3: Discovered novel molecules with top QED score. Our MoFlow finds more molecules with the best QED score. More results in

Method	1st	2nd	3rd	4th
ZINC (Dataset)	0.948	0.948	0.948	0.948
JT-VAE	0.925	0.911	0.910	-
GCPN	0.948	0.947	0.946	-
MRNN	0.948	0.948	0.947	-
GraphAF	0.948	0.948	0.947	0.946
MoFlow	0.948	0.948	0.98	0.948

EXP3: Property Optimization

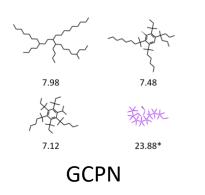
EXP4: Constrained Property Optimization

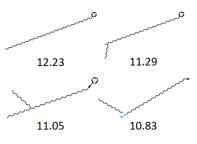
☐ Find a new molecule M' from a seed molecule M

- oTo maximize: Similarity(\mathbf{M} , \mathbf{M}') and $Y(\mathbf{M}') Y(\mathbf{M})$
 - Tanimoto similarity of Morgan fingerprint
 - Target property Y: penalized logP (plogP), the octanol-water partition coefficients (logP) penalized by the synthetic accessibility (SA) score and number of long cycles.

EXP4: Constrained Property Optimization

- **□**Best similarity
- ■Second best improvement
- □AR+RL model tends to generate long chains

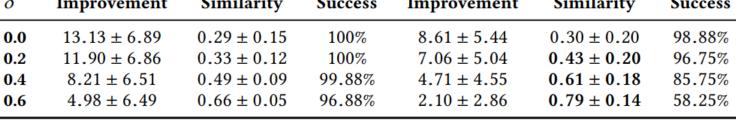


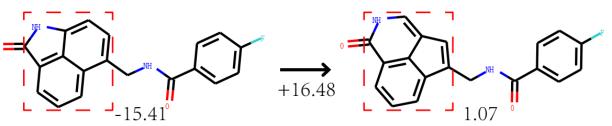


GraphAF

Table 4: Constrained optimization on Penalized-logP

	JT-VAE			GCPN		
δ	Improvement	Similarity	Success	Improvement	Similarity	Success
0.0	1.91 ± 2.04	0.28 ± 0.15	97.5%	4.20 ± 1.28	0.32 ± 0.12	100%
0.2	1.68 ± 1.85	0.33 ± 0.13	97.1%	4.12 ± 1.19	0.34 ± 0.11	100%
0.4	0.84 ± 1.45	0.51 ± 0.10	83.6%	2.49 ± 1.30	0.48 ± 0.08	100%
0.6	0.21 ± 0.71	0.69 ± 0.06	46.4%	0.79 ± 0.63	0.68 ± 0.08	100%
	GraphAF				MoFlow	
δ	Improvement	Similarity	Success	Improvement	Similarity	Success





EXP4: Constrained Property Optimization

CN1CC[NH+](C)CCN(C)CC[NH+](C)CCN(C)CC[NH+](C)CC1

COc1ccccc1C(=O)Oc1cc2c3c(c1)C(C)=CC(C)(C)N3C(=O)C2=O

C=C(C)C[N+](=C)CCN(C)C=CC(C)C=CN(C)CC

COc1ccccc1C(=O)OC1=CC=C2C(C1)C(C)=CC(C)(C)N2C(=O)C=O

Summary

■ Novel MoFlow model

- A variant of Glow for bonds
- Novel Graph conditional flow for atoms given bonds
- Novel validity correction
- olnvertible, fast inference and generation at one shot

■The state-of-the-art results

- Best results for generation and reconstruction
 - *w.r.t. novelty, uniqueness, validity, and reconstruction rate
- Best results for QED property optimization
 - ❖More drug-like molecules
- Best similarity scores for constraint optimization and second best improvement scores for plogP

This Tutorial

- Molecular Graph Generation: to generate novel molecules with optimized properties
 - Graph generation
 - Graph property prediction
 - Graph optimization
- Learning Dynamics on Graphs: to predict temporal change or final states of complex systems
 - Continuous-time network dynamics prediction
 - Structured sequence prediction
 - Node classification/regression
- Mechanism Discovery: to find dynamical laws of complex systems
 - Density Estimation vs. Mechanism Discovery
 - Data-driven discovery of differential equations

Part 1: MoFlow: An Invertible Flow Model for Generating Molecular Graphs

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com

Thank You!

Differential Deep Learning on Graphs and its Applications

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com