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This Tutorial
Molecular Graph Generation: to generate novel molecules with 

optimized properties
oGraph generation
oGraph property prediction
oGraph optimization
Learning Dynamics on Graphs: to predict temporal change or final 

states of complex systems
oContinuous-time dynamics prediction
oStructured sequence prediction
oNode classification/regression
Mechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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Part 2:
Neural Dynamics on Complex 

Networks
Chengxi Zang and Fei Wang

Weill Cornell Medicine
www.calvinzang.com
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Structures and Dynamics of Complex Systems
Brain and Bioelectrical flow Transportation and Traffic flow

Social Networks and Information flow Ecological Systems and Energy flow

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 5



Problem: Learning Dynamics of complex systems
Brain and Bioelectrical flow Transportation and Traffic flow

Social Networks and Information flow Ecological Systems and Energy flow

Dynamics? How to predict the temporal 
change of these complex systems?
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Problem: Math Formulation
Learning Dynamics on Graph
oDynamics of nodes: 𝑋𝑋 𝑡𝑡 ∈ ℝ𝑛𝑛∗𝑑𝑑 at 𝑡𝑡,  where 𝑛𝑛 is number of nodes, 
𝑑𝑑 is number of features, 𝑋𝑋(𝑡𝑡) changes over continuous time t.
oGraph: 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) ,  V are nodes, 𝐸𝐸 are edges.
oHow dynamics  𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑓𝑓(𝑋𝑋 𝑡𝑡 ,𝐺𝐺,𝜃𝜃, 𝑡𝑡) change on graph?
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Problem: Prediction Tasks
Continuous-time network dynamics prediction:
oInput: G, �𝑋𝑋 𝑡𝑡1 , �𝑋𝑋 𝑡𝑡2 , … , �𝑋𝑋 𝑡𝑡𝑇𝑇 0 ≤ 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑇𝑇 , 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑇𝑇 are arbitrary time 

moments
o?A model of dynamics on graphs 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑓𝑓(𝑋𝑋 𝑡𝑡 ,𝐺𝐺,𝜃𝜃, 𝑡𝑡)

oOutput: to predict 𝑋𝑋 𝑡𝑡 at an arbitrary time moment

(Special case) Structured sequence prediction
Input: G, �𝑋𝑋[1], �𝑋𝑋[2], … , �𝑋𝑋[𝑇𝑇] 0 ≤ 1 < ⋯ < 𝑇𝑇 , ordered sequence
? A model of dynamics on graphs 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑓𝑓(𝑋𝑋 𝑡𝑡 ,𝐺𝐺,𝜃𝜃, 𝑡𝑡)

Output: to predict next k steps 𝑋𝑋 𝑇𝑇 + 𝑘𝑘
(Special case) Node (semi-supervised) regression/classification

Input: G, �𝑋𝑋 = [ �𝑋𝑋,𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 ⊙ �𝑌𝑌] features and node labels, only one snapshot
? A model of dynamics on graphs 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑓𝑓(𝑋𝑋 𝑡𝑡 ,𝐺𝐺,𝜃𝜃, 𝑡𝑡)

Output: to predict [𝑋𝑋,𝑌𝑌]
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Why Dynamics Matter?

To understand, predict, and control real-world 
dynamic systems in engineering and science.
oBrain dynamics, traffic dynamics, social dynamics
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Challenges: Dynamics of Complex Systems
Complex systems: 
oHigh-dimensionality and 
Complex interactions
o≥ 100 nodes, ≥ 1000 interactions

Dynamics: 
oContinuous-time, Nonlinear

Structural-dynamic 
dependencies: 
oDifficult to be modeled by simple 
mechanistic models
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Challenges: Dynamics of Complex Systems

+ 

+ 

+ 

Linear Dynamics

Linear Dynamics

Non-Linear Dynamics

𝒇𝒇(𝑿𝑿 𝒕𝒕 ,𝑮𝑮,𝜽𝜽, 𝒕𝒕)

?
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Related Works 1: Learning Continuous Time 
Dynamics
To learn continuous-time dynamics
oA clear knowledge of the mechanisms, small systems, few interaction terms, 

first principle from physical laws, mechanistic models,

𝑭𝑭 =
𝑑𝑑(𝑚𝑚𝒗𝒗)
𝑑𝑑𝑡𝑡

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴:𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴: 𝑪𝑪𝑪𝑪𝑴𝑴𝑴𝑴𝑪𝑪:
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Data-driven Dynamics for Small Systems
Data-driven discovery of ODEs/ PDEs
oSparse Regression
oResidual Network
oEtc.

Small systems!
o<10 nodes & interactions
oCombinatorial complexity
oNot for complex systems

Image from: Brunton et al. 2016. Discovering governing equations from data by 
sparse identification of nonlinear dynamical systems. PNAS
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Related Works 2: Structured Sequence Learning

Defined characteristics
oDynamics on graphs are regularly-sampled with same time 
intervals

Temporal Graph Neural Networks
oRNN + CNN
oRNN + GNN
X[t+1]=LSTM(GCN([t], G))

Limitations: 
oOnly ordered sequence instead of continuous physical time
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Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.
Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks

https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf


Related Works 3: Node (Semi-supervised) 
Classification/Regression

Defined characteristics
oOne-snapshot features and some labels on graphs
oGoal: to assign labels to each node
Graph Neural Networks
oGCN, 
oGAT, etc.
Limitations
o1 or 2 layers
oLacking a continuous-time dynamics view
To spread features or labels on graphs
Continuous-time: more fine-grained control on diffusion
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Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks
Velickovic et al. 2017. Graph Attention Networks
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Goal: A Unified Framework for All?
Continuous-time network dynamics prediction:
o Input: G, �𝑋𝑋 𝑡𝑡1 , �𝑋𝑋 𝑡𝑡2 , … , �𝑋𝑋 𝑡𝑡𝑇𝑇 0 ≤ 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑇𝑇 , 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑇𝑇 are arbitrary time moments
o?Model: dynamics on graphs 𝒅𝒅𝑿𝑿(𝒕𝒕)

𝒅𝒅𝒕𝒕
= 𝒇𝒇(𝑿𝑿 𝒕𝒕 ,𝑮𝑮,𝜽𝜽, 𝒕𝒕)

oOutput: to predict 𝑋𝑋 𝑡𝑡 at an arbitrary time moment

 (Special case) Structured sequence prediction
oInput: G, �𝑋𝑋[1], �𝑋𝑋[2], … , �𝑋𝑋[𝑇𝑇] 0 ≤ 1 < ⋯ < 𝑇𝑇 , ordered sequence
o? Model: dynamics on graphs 𝒅𝒅𝑿𝑿(𝒕𝒕)

𝒅𝒅𝒕𝒕
= 𝒇𝒇(𝑿𝑿 𝒕𝒕 ,𝑮𝑮,𝜽𝜽, 𝒕𝒕)

oOutput: to predict next k steps 𝑋𝑋 𝑇𝑇 + 𝑘𝑘
 (Special case) Node (semi-supervised) regression/classification
oInput: G, �𝑋𝑋 = [ �𝑋𝑋,𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 ⊙ �𝑌𝑌] features and node labels, only one snapshot
o? A model of dynamics on graphs 𝒅𝒅𝑿𝑿(𝒕𝒕)

𝒅𝒅𝒕𝒕
= 𝒇𝒇(𝑿𝑿 𝒕𝒕 ,𝑮𝑮,𝜽𝜽, 𝒕𝒕)

oOutput: to predict [𝑋𝑋,𝑌𝑌]
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Our Ideas
Differential Equation Systems 
oGraphs and Differential Equations are general tools to describe 
structures and dynamics of complex systems 

Deep Learning
oRNN, GNN, Temporal GNN, Res-Net etc. are the state-of-the-art 
computational tools driven by data

How to leverage Differential equation systems and 
Deep Learning?
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Neural Dynamics on Complex Networks (NDCN)
Differential Deep Learning
oDifferential Equation systems: 𝒅𝒅𝑿𝑿(𝒕𝒕)

𝒅𝒅𝒕𝒕
= 𝒇𝒇 𝑿𝑿 𝐭𝐭 ,𝐆𝐆,𝑾𝑾, 𝐭𝐭

is a graph neural network like structure.
oDifferential Deep model: 𝑋𝑋 𝒕𝒕 = 𝑿𝑿 𝟎𝟎 +
∫𝟎𝟎
𝒕𝒕 𝒇𝒇 𝑿𝑿 𝝉𝝉 ,𝐆𝐆,𝑾𝑾, 𝝉𝝉 𝒅𝒅𝝉𝝉 for arbitrary time 𝑡𝑡

oLearned as following optimization problem:

Our NDCN Model :
 Argmin 𝐿𝐿 = ∫0

𝑇𝑇 |𝑋𝑋 𝑡𝑡 − �𝑋𝑋(𝑡𝑡)|𝑑𝑑𝑡𝑡
 S.t. 𝑋𝑋ℎ 𝑡𝑡 = 𝑡𝑡𝑀𝑀𝑛𝑛𝑡 𝑊𝑊 𝑡𝑡 𝑊𝑊𝑒𝑒 + 𝑏𝑏𝑒𝑒 𝑊𝑊0 + 𝑏𝑏0


𝑑𝑑𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅 𝜙𝜙𝑋𝑋ℎ 𝑡𝑡 𝑊𝑊 + 𝑏𝑏 ,𝑋𝑋ℎ 0

 𝑋𝑋 𝑡𝑡 = 𝑋𝑋ℎ 𝑡𝑡 𝑊𝑊𝑑𝑑 + 𝑏𝑏𝑑𝑑
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Neural Dynamics on Complex Networks (NDCN)
Differential Deep Learning
oDifferential Equation systems: 𝒅𝒅𝑿𝑿(𝒕𝒕)

𝒅𝒅𝒕𝒕
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oLearned as following optimization problem:

Our NDCN Model :
 Argmin 𝐿𝐿 = ∫0

𝑇𝑇 |𝑋𝑋 𝑡𝑡 − �𝑋𝑋(𝑡𝑡)|𝑑𝑑𝑡𝑡
 S.t. 𝑋𝑋ℎ 𝑡𝑡 = 𝑡𝑡𝑀𝑀𝑛𝑛𝑡 𝑊𝑊 𝑡𝑡 𝑊𝑊𝑒𝑒 + 𝑏𝑏𝑒𝑒 𝑊𝑊0 + 𝑏𝑏0


𝑑𝑑𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅 𝜙𝜙𝑋𝑋ℎ 𝑡𝑡 𝑊𝑊 + 𝑏𝑏 ,𝑋𝑋ℎ 0

 𝑋𝑋 𝑡𝑡 = 𝑋𝑋ℎ 𝑡𝑡 𝑊𝑊𝑑𝑑 + 𝑏𝑏𝑑𝑑
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Interpretation from Residual Learning
Deep Learning: 𝒇𝒇∗ is a neural layer
oEach layer: 𝑋𝑋 𝑙𝑙 + 1 = 𝑓𝑓𝑙𝑙+1(𝑋𝑋[𝑙𝑙])
oDeep Model: 𝑋𝑋 𝐿𝐿 = 𝑓𝑓𝐿𝐿 ∘ ⋯ ∘ 𝑓𝑓1 𝑋𝑋 0 ,

Residual Learning: deep
oEach layer:  X 𝑙𝑙 + 1 = X 𝑙𝑙 + fl+1 X l
oDeep Model: 𝑋𝑋 𝐿𝐿 = 𝑓𝑓𝐿𝐿 + 𝐼𝐼 ∘ ⋯ ∘ (𝑓𝑓1+𝐼𝐼)(𝑋𝑋[0])

Differential Deep Learning: 
oEach time moment (“layer”): Instantaneous rate at 

t : dX
dt

= f(X(t))
Each Discrete layer vs. continuous time moment
Neural mapping vs. Neural Differential Equation Systems

oContinuous-time (“Deep”) Model: X t = X 0 +
∫0
t f X τ , W, τ dτ Integration over continuous-time
A sequence of mappings vs. continuous integration
Trajectory of dynamics
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Interpretation from Graph Neural Networks
GNN, Residual-GNN, ODE-

GNN, NDCN
oGNN: 𝑋𝑋𝑡𝑡+1 = 𝑓𝑓(𝐺𝐺,𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡)
oResidual-GNN: 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝑓𝑓(𝐺𝐺,𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡)
oDifferential-GNN: 𝑋𝑋𝑡𝑡+𝛿𝛿 = 𝑋𝑋𝑡𝑡 +
𝛿𝛿𝑓𝑓 𝐺𝐺,𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡 ,𝛿𝛿 → 0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑓𝑓 𝐺𝐺,𝑋𝑋𝑡𝑡, 𝜃𝜃𝑡𝑡

Our model is an Differential-
GNN with continuous layer 
with real number depth.

Residual Differential NDCN



Interpretation from RNN and Temporal GNN
RNN, Temporal GNN and our model
oRNN or Temporal GNN
𝑡𝑡𝑡 = 𝑓𝑓 𝑡𝑡𝑡−1, 𝑥𝑥𝑡𝑡 , 𝜃𝜃𝑡𝑡 or𝑡𝑡𝑡 = 𝑓𝑓 𝑡𝑡𝑡−1,𝐺𝐺 ∗ 𝑥𝑥𝑡𝑡 , 𝜃𝜃𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑜𝑜 𝑡𝑡𝑡 ,𝑤𝑤𝑡𝑡
oResidual RNN  or Temporal GNN with skip connection
𝑡𝑡𝑡 = 𝑡𝑡𝑡−1 + 𝑓𝑓 𝑡𝑡𝑡−1, 𝑥𝑥𝑡𝑡 ,𝜃𝜃𝑡𝑡 or  𝑡𝑡𝑡 = 𝑡𝑡𝑡−1 + 𝑓𝑓 𝑡𝑡𝑡−1,𝐺𝐺 ∗ 𝑥𝑥𝑡𝑡 ,𝜃𝜃𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑜𝑜 𝑡𝑡𝑡 ,𝑤𝑤𝑡𝑡

oDifferential RNN  or Differential GNN

𝑑𝑑ℎ𝑡𝑡
𝑑𝑑𝑡𝑡

= 𝑓𝑓 𝑡𝑡𝑡 , 𝑥𝑥𝑡𝑡 , 𝜃𝜃𝑡𝑡 or  𝑑𝑑ℎ𝑡𝑡
𝑑𝑑𝑡𝑡

= 𝑓𝑓 𝑡𝑡𝑡 ,𝐺𝐺 ∗ 𝑥𝑥𝑡𝑡 , 𝜃𝜃𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑜𝑜 𝑡𝑡𝑡 ,𝑤𝑤𝑡𝑡

Our model is an Differential GNN
Learning continuous-time network dynamics
Encompassing Temporal GNN by discretization
Encompassing RNN by not using graph convolution
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Exp1: Learning Continuous-time Network Dynamics

The Problem:
oInput: �𝑋𝑋 𝑡𝑡1 , �𝑋𝑋 𝑡𝑡2 , … , �𝑋𝑋 𝑡𝑡𝑇𝑇 0 ≤ 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑇𝑇 , 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑇𝑇 are 
arbitrary time moments with different time intervals
oOutput: 𝑋𝑋 𝑡𝑡 , t is an arbitrary time moment
interpolation prediction: 𝑡𝑡 < 𝑡𝑡𝑇𝑇 and ≠ 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑇𝑇
extrapolation prediction: t > 𝑡𝑡𝑇𝑇

Setups:
o120 irregularly sampled snapshots of network dynamics
oFirst 100: 80 for train 20 for testing interpolation
oLast 20: testing for extrapolation
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Real-world Dynamics on Graph (adjacency matrix A)
oHeat diffusion: 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)

𝑑𝑑𝑡𝑡
= −𝑘𝑘𝑖𝑖,𝑗𝑗 ∑𝑗𝑗=1𝑛𝑛 𝐴𝐴𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖 𝑡𝑡 − 𝑥𝑥𝑗𝑗(𝑡𝑡))

oMutualistic interaction: 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑏𝑏𝑖𝑖 + 𝑥𝑥𝑖𝑖 𝑡𝑡 1 − 𝑥𝑥𝑖𝑖 𝑡𝑡
𝑘𝑘𝑖𝑖

𝑥𝑥𝑖𝑖 𝑡𝑡
𝑐𝑐𝑖𝑖

− 1 +
∑𝑗𝑗=1𝑛𝑛 𝐴𝐴𝑖𝑖,𝑗𝑗

𝑥𝑥𝑖𝑖 𝑡𝑡 ∗𝑥𝑥𝑗𝑗(𝑡𝑡)

𝑑𝑑𝑖𝑖+𝑒𝑒𝑖𝑖𝑥𝑥𝑖𝑖 𝑡𝑡 +ℎ𝑗𝑗𝑥𝑥𝑗𝑗(𝑡𝑡)

oGene regulatory: 𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖 𝑡𝑡 𝑓𝑓 + ∑𝑗𝑗=1𝑛𝑛 𝐴𝐴𝑖𝑖,𝑗𝑗
𝑥𝑥𝑗𝑗 𝑡𝑡 ℎ

𝑥𝑥𝑗𝑗 𝑡𝑡 ℎ+1

Graphs
oGrid, Random, power-law, small-world, community, etc.
Visualizing dynamics on graph
oNodes are numbered by community labels 
oMapped into a ℕ2 grid
o𝑋𝑋(𝑡𝑡)𝑛𝑛∗1: ℕ2  ℝ

Canonical Dynamics on Graphs in Physics 
and Biology

0

1 2 3 0
1 3

2 0
1 3

2
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Exp1: Learning Continuous-time Network Dynamics
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Differential NDCN

Chen et al. 2019. Neural Ordinary Differential Equations. NeurIPS.

Baselines: ablation models
oDifferential-GNN
No encoding layer
oNeural ODE Network
No graph diffusion
oNDCN without control parameter 𝑊𝑊
Determined dynamics

http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf


Exp1: Heat Diffusion on Different Graphs
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Exp1: Mutualistic Dynamics on Different Graphs
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Exp1: Gene Dynamics on Different Graphs
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Exp1: Results for Continuous-time Extrapolation

Mean Absolute Percentage Error
20 runs for 3 dynamics on 5 graphs
Our model achieves lowest error 
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Exp1: Results for Continuous-time Interpolation

Interpolation is easier than extrapolation
Our model achieves lowest error
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Exp2: Structured Sequence Prediction
The Problem (Structured sequence prediction):
oInput: �𝑋𝑋[1], �𝑋𝑋[2], … , �𝑋𝑋[𝑇𝑇] 0 ≤ 1 < ⋯ < 𝑇𝑇 , 1, . .𝑇𝑇 are regularly-
sampled with same time intervals 
with an emphasis on ordered sequence rather than time
oOutput: 𝑋𝑋 𝑡𝑡𝑇𝑇 + 𝑀𝑀 , next M steps
extrapolation prediction

Setups:
o100 regularly sampled snapshots of network dynamics
oFirst 80 for training, last 20 for testing
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Exp2: Structured Sequence Prediction
Baselines: temporal-GNN models
oLSTM-GNN
X[t+1]=LSTM(GCN([t], G))
oGRU-GNN
X[t+1]=GRU(GCN([t], G))
oRNN-GNN
X[t+1]=RNN(GCN([t], G))
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Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.
Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks

https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf


Exp2: Structured Sequence Prediction
Results: 
oOur model achieves lowest error with much less parameters

The learnable parameters:
oLSTM-GNN: 84,890, GRU-GNN: 64,770, RNN-GNN: 24,530
oNDCN: 901
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Exp3. Node Semi-suprvised Classification

The Problem:
oOne-snapshot case
oInput: G, 𝑋𝑋, part of labels 𝑌𝑌(𝑋𝑋)
oOutput: To Complete 𝑌𝑌(𝑋𝑋)

Datasets:
o
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Exp3. Node Semi-suprvised Classification

Baselines
oGraph Convolution Network (GCN)
oAttention-based GNN (AGNN)
oGraph Attention Networks (GAT)
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Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks
Velickovic et al. 2017. Graph Attention Networks

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903


Exp3. Node Semi-suprvised Classification

Interpretation of model
oInput: G, [𝑋𝑋,𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘⨀𝑌𝑌], features and some node  labels
oOutput: To Complete 𝑌𝑌
oModel: A graph dynamics to spread features and labels over time T

𝑑𝑑[𝑑𝑑,𝑌𝑌]
𝑑𝑑𝑡𝑡

= f(G, X, Y, W)
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Exp3. Node Semi-suprvised Classification

Metrics
oAccuracy over 100 runs

Results
oContinuous-time 
dynamics on graphs
oBest results at time T=1.2
Continuous depth/time
oNot using dropout
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Summary
Our NDCN, a unified framework to solve
oContinuous-time network dynamics prediction:
oStructured sequence prediction
oNode regression/classification at final state
good performance with less parameters.

Differential Deep Learning on Graphs
oA potential data-driven method to model structure and dynamics of 
complex systems in a unified framework
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This Tutorial
Molecular Graph Generation: to generate novel molecules with 

optimized properties
oGraph generation
oGraph property prediction
oGraph optimization
Learning Dynamics on Graphs: to predict temporal change or final 

states of complex systems
oContinuous-time dynamics prediction
oStructured sequence prediction
oNode classification/regression
Mechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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This Tutorial
www.calvinzang.com/DDLG_AAAI_2020.html
AAAI-2020
Friday, February 7, 2020, 2:00 PM -6:00 PM
Sutton North, Hilton New York Midtown, NYC
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http://www.calvinzang.com/DDLG_AAAI_2020.html
https://aaai.org/Conferences/AAAI-20/


Differential Deep Learning on 
Graphs and its Applications

Chengxi Zang and Fei Wang
Weill Cornell Medicine
www.calvinzang.com
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Thank You!

http://www.calvinzang.com/
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