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Abstract
This tutorial investigates the recent advancements in in-
troducing differential equation theory to the deep learn-
ing methods, denoted as differential deep learning, and fur-
ther broadens the horizon of such methods with an empha-
sis on graphs. We will show that differential deep learning
on graphs are powerful tools for modeling the structures
and dynamics of complex systems and generating molecu-
lar graphs in drug discovery.

Tutorial information
Modern deep learning methods have achieved significant
performance on various tasks by transforming the data in
a layer-by-layer manner (LeCun, Bengio, and Hinton 2015).
The residual learning (He et al. 2016a), which introduces
skip-connection to deep structures, further overcomes van-
ishing of gradients and empowers the deep learning meth-
ods with deeper structures and thus more powerful expres-
sion ability. However, in the perspective of researchers in
dynamic systems (control, applied physics, systems biology
etc.), such a residual-net framework is the approximation of
differential equation (DE) systems by Euler method (which
is a 1st order numerical method in solving DEs’ initial value
problems) (Pearlmutter 1995; Weinan 2017; Lu et al. 2017;
Chen et al. 2018). Thus, fundamental questions are raised:
Can we view (residual-) deep models as dynamic systems
and then use differential equation theory as a framework to
analyze them? Can we design new and more powerful deep
models inspired by dynamic systems? What are the bene-
fits by introducing DE theory to deep learning? What are the
potential new applications?

The boldest goal of this tutorial is to bridge the gap be-
tween the modern deep learning methods in computer sci-
ence and DE theory (developed in control, applied math,
physics, systems biology, numerical computation, etc.), and
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further to broaden the horizon of the deep learning methods
with an emphasis on deep learning methods on graphs (also
termed networks) and their applications. We will show that
differential deep learning on graphs are powerful tools to
model the structures and dynamics of networks and to gen-
erate molecular graphs. We summarize the contents covered
in this tutorial as follows.

We will start by introducing the basic idea of Differential
Deep Learning (DDL). We motivate the audiences by con-
necting the dots between deep learning models and dynamic
systems modeled by differential equations. Basic ideas of
differential equations (DEs) and physics models are illus-
trated. We will show examples of how to make deep struc-
tures into differential equation systems. We will conclude
this part by summarizing the importance and values of dif-
ferential deep learning.

In the perspective of dynamic systems, the residual learn-
ing framework, e.g. Residual-Net (He et al. 2016a; 2016b),
is the approximation of differential equation (DE) systems
by Euler method (1st order numerical method in solving
DEs’ initial value problems (Dormand 1996)). We show the
evolutionary path from CNN to Residual-Net and further
to ODE-Net (Chen et al. 2018). Inspired by the CNNs de-
veloped for images, Graph neural networks (GNN) (Kipf
and Welling 2017) are proposed to deal with combinatorial
graph data. We show how to get Residual-GNN, ODE-GNN,
and our neural-dynamics-on-complex-network model. The
promising experimental results demonstrate our model’s ca-
pability of jointly capturing the structure, dynamics and se-
mantics of complex systems (Zang and Wang 2019).

Normalizing flows (Rezende and Mohamed 2015) are
one of the most promising deep generative models. We
show how to use flow-based models for graphs, especially
on molecular graph generation. We introduce our MoFlow
model which achieved the state-of-the-art performance on
molecular graph generation.

”Data Science lacking a model of reality may be statistics
but hardly a science. –Judea Pearl”. In physics, differential
equations are one of the most successful models which de-
scribe the time-varying reality well. We motivate the prob-
lem by briefly introducing the history of network science.
Then we show how to get DEs from statistical distribution
functions by constructing dynamic systems. We show the
relationships between DEs and the distributions functions.



Many DEs in network science and statistical physics can be
found in a principled way (Zang et al. 2019).

Three applications of differential deep learning on graph
models are discussed: molecular graph generation, namely
to generate novel molecules with optimized properties;
learning dynamics on graphs, namely to predict temporal
change or final states of complex systems (Zang and Wang
2019), and mechanism discovery in graphs, namely to find
dynamical laws of complex systems (Kutz et al. 2017) and
distributions (Zang et al. 2019).

We conclude the tutorial by introducing related research
topics. The limitations and potential future directions are
then discussed. We will leave some time for questions and
answers, feedback and further discussions.

Tutorial materials and outline
• Introduction: What’s Differential Deep Learning and their

graph applications (45 min)
– Introduction to graphs and differential equations.
– What is differential deep learning? Integrating differen-

tial equations into deep models.
– Importance and challenges.
– Graph applications: molecular graph generation, learn-

ing dynamics on graphs, and mechanism discovery.
• Molecular graph generation (45 min)

– Drug discovery.
– Molecular graph generation and normalizing flow mod-

els.
– Our MoFlow model for molecular graph generation
– Experiments on molecule generation, reconstruction,

visualization and optimization.
• Learning dynamics on graphs. (45 min)

– Learning dynamics of complex systems.
– Our differential graph neural networks
– Interpretations from Residual-Net, GNN, RNN, and

temporal GNN.
– Experiments on continuous-time network dynamics

prediction, structured sequence prediction, and node
classification

• Mechanism discovery in graphs (45 min)
– From data to statistics, and further to dynamical mod-

els.
– Density estimation in computer science vs. mechanism

discovery in network science.
– A theorem bridging distributions and differential equa-

tions.
– Data-driven discovery of differential equations and dis-

tributions.
• Conclusion: Discussions and Future Directions (30 min)

Duration
3 hours, 30 minutes, plus 30-minute break. This tutorial will
be held at The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-20), February 7-12, 2020 at the Hilton
New York Midtown, New York, New York, USA.

Audience
All the researchers and practitioners engaged in data min-
ing and machine learning are welcome. Basic knowledge
on deep learning, graph mining, and differential equations
is preferred but not required. The estimated number of par-
ticipants is 100.

Presenter
Please kindly refer to the CVs of Dr. Chengxi Zang and Dr.
Fei Wang as attached.
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