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ABSTRACT
What is the growth pattern of social networks, like Facebook and
WeChat? Does it truly exhibit exponential early growth, as predict-
ed by textbook models like the Bass model, SI, or the Branching
Process? How about the count of links, over time, for which there
are few published models?

We examine the growth of several real networks, including one
of the world’s largest online social network, “WeChat”, with 300
million nodes and 4.75 billion links by 2013; and we observe power
law growth for both nodes and links, a fact that completely breaks
the sigmoid models (like SI, and Bass). In its place, we propose
NETTIDE, along with differential equations for the growth of the
count of nodes, as well as links. Our model accurately fits the
growth patterns of real graphs; it is general, encompassing as spe-
cial cases all the known, traditional models (including Bass, SI,
log-logistic growth); while still remaining parsimonious, requiring
only a handful of parameters. Moreover, our NETTIDE for link
growth is the first one of its kind, accurately fitting real data, and
naturally leading to the densification phenomenon. We validate our
model with four real, time-evolving social networks, where NET-
TIDE gives good fitting accuracy, and, more importantly, applied
on the WeChat data, our NETTIDE model forecasted more than
730 days into the future, with 3% error.

Keywords
Social networks; Growth model; Power law growth; Fizzle Logis-
tic; Link growth

1. INTRODUCTION
How many members will Twitter have, next month? How many

friendship links will FaceBook (or WeChat1, or google-plus) have,
next year? The count of members of a network (or belief, or re-
ligion, or epidemic) is of vital importance (growth of social prod-
ucts, provisioning, social implications of policy changes, etc) and
has been studied extensively (see section 2). The count of links has
attracted less interest, although it is also important (well connected

1www.wechat.com/en/
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nodes in, say, FaceBook, are less inclined to churn; well connected
neurons in a brain indicate resistance to Alzheimer’s disease, etc).

Network growth models: Researchers from multiple disciplines
have studied network growth phenomenon for decades [7, 24, 20,
23, 31, 19], and have achieved significant advancement towards
understanding the generation of scale-free networks, the densifi-
cation of network links, the shrinking diameters and so on. Net-
work growth models include the celebrated Barabási-Albert model
and its variants [7, 8, 10] - they all assume uniform growth of n-
odes. The Bass model [27] and the Susceptible-Infected (SI) mod-
el [3], produce sigmoid growth curve with exponential growth at
early stage. None of them studies the growth of links over time.

In short, the focus of this paper is to answer the following ques-
tions of social network growth:

1. How does the number of nodes n(t) grow over time?
2. How does the number of links e(t) grow over time?

Reality check: The reader may think that, at least the first ques-
tion, already has an answer: sigmoid growth (which is the solution
to the SI and the Bass model). However, reality disagrees, exhibit-
ing power-law growth, instead, as shown in Figures 1a-b. Specif-
ically, we examine the evolving processes of four real social net-
works, including WeChat, arXiv [1], Enron [18] and Weibo [35],
respectively representing on-line social communication networks,
co-authorship networks, enterprise social networks and informa-
tion cascading networks. Taking WeChat for instance, we study its
detailed evolution from zero to 300 million nodes and 4.75 billion
links, spanning two years. We surprisingly find that although the
growth curves of the four social networks have different shapes,
they all follow a power-law like growth pattern. Specifically, we
find the growth dynamics of WeChat follows power-law growth
with exponent 2.15 for nodes and 3.01 for links (Fig 1a), and the
growth dynamics of arXiv follows power-law like growth before
hitting the plateaus (Fig 1b). These observations go far beyond our
traditional expectations of exponential or uniform network growth
dynamics.

Our design goals: Since sigmoids and related textbook models
are contradicted by reality, we need a better model. We shoot for a
model that will fulfill the following GOALs:
G1. Parsimony: The model should have as few parameters as nec-

essary, and still generate power-law early-growth.
G2. All encompassing: The model should be general, encompass-

ing as special cases all the known, traditional models (like
Bass, SI, and Log-Logistic growth).

G3. Link growth: The model should be able to accurately capture
the growth dynamics of links.

G4. Intuition: The model should easy to explain, with intuitive
arguments.

We propose a novel dynamic model, named NETTIDE, for net-
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Figure 1: Reality disobeys sigmoids: WeChat (a), and arXiv (b) - nodes over time (squares 2), well fitted by our proposed NETTIDE-
Node (solid red line), but not by the SI model (dashed gray line). The link count over time (circles #) and our fitting model (NETTIDE-
Link - in solid blue). Notice that there is no competitor for link dynamics (SI is crossed out). All axes are in log scale.

work growth. The NETTIDE model consists of two components,
NETTIDE-Node and NETTIDE-Link for nodes and links respec-
tively. As we show later, our NETTIDE achieves the four design
goals, and it matches the behavior of several, disparate real social
networks. Moreover, we show that NETTIDE is able to forecast
the growth of WeChat almost 2 years in the future (730 days), with
≈ 3-percent error, which is impressive given the fact that our mod-
el is non-linear and that the “butterfly effect” holds. As points of
reference, the weather forecasting (also governed by non-linear e-
quations) goes up to 5-10 days[15], and most forecasting papers in
the kdd literature usually do just 1 step look-ahead[25, 29].

In summary, the contributions of this work and the advantages of
NETTIDE are as follows:
• Novel model NETTIDE: It matches all design goals (G1-

G4), that is, it is parsimonious, it includes past models as
special cases, it provides the first-ever difference equation
for link growth, and it is intuitive.
• Accuracy: NETTIDE accurately fits the growth of several,

diverse, real networks.
• Usefulness: NETTIDE gives excellent forecasting, down to

3% error, for almost 2 years ahead in the future.
Reproducibility: Several of the datasets are public[1, 18]; our

code is open-sourced at github.com/calvin-zcx/NetTide
The outline of the paper is the typical one: survey, proposed

method, experiments, and conclusions.

2. RELATED WORK
We presented related work in two areas: evolving network and

growth models.

2.1 Evolving network
The pioneering studies in evolving network have revealed that

the growth process of a real network plays a vital role in shaping its
structure, like the power-law distribution of degree [7], shrinking
diameters [24], densification growth [24] and so on. However, all
these evolving network models assume that the dynamics of the
node growth process are uniform, like the Barabási-Albert model
(BA) model [7] and its variants [10]. Some other works empirically
exploit node growth dynamics as input, and do not aim to find the
patterns of node growth dynamics [17, 21, 24, 23, 9].

In literature, the growth dynamics of links are largely ignored.
A few works show the double preferential attachment or the ran-

dom attachment [2, 8, 14] of the internal links may make the net-
work more homogeneous, where the growth rate of links are also
assumed to be uniform. Recently, the effects of information diffu-
sion on link creation are studied in [34, 4], and [12] proposed the
multivariate Hawkes process model (Coevolve) to capture the mi-
croscopic evolution of the linking and information diffusion. How-
ever, it suffers from two issues: computation time is prohibitive,
being O(N2) where N represents the number of events as men-
tioned in [12] ; being based on a Hawkes process, it can NOT gen-
erate power-law growth with the observed exponents (2.15, 3.01 in
Fig 1). See discussion on Hawkes process, in section 2.2.

2.2 Growth models
The growth models [5] are discussed in a wide range of fields.

The most classical models on growth phenomenon are Susceptible
Infected (SI) model in epidemiology [3] and the Bass model [27] in
the diffusion of innovations. They generate S-shaped sigmoid curve
with exponential growth at early stage for the growth of infected
nodes. They also provide intuitive explanation for the microscopic
infection process in a mean-field form. The exponential growth
induced by the constant infection rate is against the intuition of the
forgetting nature of human [6, 32], or the fizzling patterns in the
social networks [26]. Models like PhoenixR [13] tried to introduce
fizzling mechanism based on Susceptibel Infected Recovered (SIR)
model [3]. However, the constant recovery rate based on SIR can
not slow the exponential growth down to the power law growth. In
all, all the above models cannot generate power-law growth as we
observed in the real social network data.

Recently, studies based on a kind of self-excited point process,
i.e. Hawkes processes (HP) [16], are introduced to capture the
growth and diffusion phenomena, which can be viewed as the en-
dogenous branching process (BP) with the exogenous immigration
process [22], like Crane-Sornette (CS) model [11], SpikeM [30].
The HP and its variants above can generate growth patterns in three
regimes: exponential growth in super-critical regime like SpikeM,
the power law growth with exponent< 1 for rate and exponent< 2
for the cumulative count like CS model, and the growth dying out
quickly in sub-critical regime. Thus, all the above models cannot
generate power-law growth with arbitrary exponent, like 2.15 we
observed in WeChat social network. In addition, none of previous
models describe the growth dynamics of links.

We summarize the relative advantages and failures of all above



Table 1: Capabilities of models. Only our model meets all specs.
Net Growth Growth phenomenon Our model

Capability BA FF Coevolve SI BASS CS SpikeM PhoenixR NetTide

Exponential growth X X X X X X X
Power law growth with arbitrary exponent X
Differential equation for n(t) X X X X X X
Closed form n(t) X X X
Differential equation for e(t) X X

models in Table 1. Only our NETTIDE model meets all the advan-
tages.

3. THE NETTIDE MODEL

Table 2: Symbols and Definitions
Symbols Definitions

N Total number of the whole population
n(t) Cumulative number of users by time t

dn(t)/dt Number of new users at time t
e(t) Cumulative number of links by time t

de(t)/dt Number of new links at time t
β Maximum growth rate of nodes
θ Temporal fizzling exponent
β′ Maximum linking rate
γ The power law sparsity exponent
α The linear sparsity coefficient

3.1 Preliminaries
Traditional models, like SI/Bass fail to match reality, like the

power-law early growth, as shown in Figure 1. We will use the
term early growth to indicate the time period that is way before the
inflection point - in that stage, a sigmoid model exhibits exponential
growth. The SI model is powerful, intuitive, and heavily used in
numerous fields, either as-is or with tiny modifications (like the
Bass model, that adds a noise term). However, it fails qualitatively
to match the real data of Figure 1a and 1b: it can only generate
sigmoids over time, which lead to near-exponential initial growth -
not power-law!

Some reasonable, but wrong attempts: Clearly, we need to
replace the SI model with a better one. How should one go about
it? The growth rate should depend on n(t) (the infected ones) as
well as on the susceptibles (N − n(t)) - but maybe not linearly?
Maybe not all susceptibles are available (e.g., some of them are
taking precautions against the infection) and/or not all infected ones
are actually active (e.g., some of them stay home). With less-than-
full participations, the equation becomes:
• Unsuccessful attempt 1: partial participation(s): We tried
n(t)ζ , as well as ((N − n(t))ψ), where ζ < 1, ψ < 1 try to
model the less-than-full participation:

dn(t)

dt
= βn(t)ζ (N − n(t))ψ

but none of the combinations we tried, gave the the power-
law growth of Figure 1.

Maybe we should vary the infectivity factor β, say, decaying over
time (possibly because the novelty wears off). An obvious way to
show diminishing interest would be exponential decay, i.e., β =

β0 ∗ exp(−ξt) where ξ is the half-life of the radioactive-like decay
of enthusiasm:
• Unsuccessful attempt 2: radioactive decay

dn(t)

dt
= β0 exp(−ξt)n(t)ζ (N − n(t))ψ

No, this does not produce a power-law growth, either. Maybe we
should use a few more parameters? After several other attempts,
that we will not bore the reader with, the final answer is that we
need only one additional parameter, provided that we have the cor-
rect functional form!

3.2 NETTIDE-Node
We saw that “partial participations” and “radioactive decay” are

reasonable, but wrong approaches. It turns out that a good, parsi-
monious model has: full participations, but power law decay of the
infectivity/enthusiasm β.

Our G4 goal is intuitiveness - why would human interest fizzle,
following a power law? Power law decays have been observed in
social interactions (email response times etc, as we mentioned in
the related work section); as well as in the theory of random walks
(the time between zero-crossings follows power law with exponent
-1.5). Thus, power law decays are as equally justifiable and intu-
itive as exponential (= radioactive) decays.

And, as we show next, that is all that is needed, to generate the
power-law growth of Figures 1a and 1b. Next, we give the details
and the proofs for the growth of nodes (NETTIDE-Node model) - in
the next subsection, we work on the links (NETTIDE-Link model).
We summarize the symbols in table 2.

As we said, our NETTIDE-Node is governed by the differential
equation below:

dn(t)

dt
=
β

tθ
n(t)(N − n(t)) (1)

A social network with a large population n(t) has a propensity
to attract more nodes in the early stage. As the population who can
join the social network is limited, its growth will be constrained by
the decreasing number of potential nodes (N − n(t)), especially
at the saturation stage. This is a natural phenomenon and has been
observed in numerous disciplines, from the law of mass action in
chemistry to model the rate of a chemical reaction, to the spreading
of disease between the susceptible and the infected in epidemics.
The term β

tθ
(t > 0) is the fizzling infection/excitement rate since

the inception of the social network. That is, people have decaying
excitement to infect their friends to join a social network. It is
exactly the exponent θ of the power law decay that leads to various
growth dynamics, including the power law growth of Figures 1a
and 1b. This is the reason that we refer to θ as the temporal fizzling
exponent.

Next, we give the proofs that (a) our NETTIDE-Node model can
indeed lead to power law growth, and (b) it includes the sigmoid
models (SI etc) as special cases.



LEMMA 1. When θ = 1, NETTIDE-Node follows Log-Logistic
growth dynamics, shown in equation (3), which approximates the
power law growth shown in equation (6) with exponent βN when
n(t)� N .

PROOF. When θ = 1, the NETTIDE-Node leads to

dn(t)

dt
=
β

t
n(t)(N − n(t)) (2)

As this is a separable differential equations, we can separate n(t)
term and t term to do the integral separately, and then get

n(t) = N
λ0 exp{

∫ t
t0

βN
µ
dµ}

1 + λ0 exp{
∫ t
t0

βN
µ
dµ}

= N
λ0(

t
t0
)βN

1 + λ0(
t
t0
)βN

(3)

where

λ0 =
n0

N − n0
(4)

and n0 is the total number of nodes in the initial time t0 of the
system. If n(t)� N ,

dn(t)

dt
≈ βN

t
n(t) (5)

leads to

n(t) = n0(
t

t0
)βN (6)

which shows power law growth with exponent βN . �

LEMMA 2. When θ 6= 1, NETTIDE-Node follows growth pat-
tern as in equation (7). When n(t)� N , the growth at early times
behaves as equation (8).

We name equation (7) Fizzle-Logistic growth, and equation (8)
Fizzle-Exponential growth.

PROOF. When θ 6= 1, the deviation procedures of equation (7)
and the initial growth (8) are similar with Proof in Lemma 1. We
get:

n(t) = N
λ0 exp{

∫ t
t0

βN

µθ
dµ}

1 + λ0 exp{
∫ t
t0

βN

µθ
dµ}

= N
λ0 exp { βN1−θ (t

1−θ − t1−θ0 )}
1 + λ0 exp { βN1−θ (t

1−θ − t1−θ0 )}

(7)

where λ0 is defined in Lemma 1. When n(t) � N , the initial
growth behaves as:

n(t) = n0 exp {
∫ t

t0

βN

µθ
dµ}

= n0 exp {
βN

1− θ (t
1−θ − t1−θ0 )}

(8)

Now, we show the reason why we name it Fizzle-Logistic. It is
worth recalling that if one random variable (r.v.) follows the Log-
Logistic distribution, then its logarithm follows a logistic distribu-
tion. Following the naming rule of the Log-Logistic distribution,
we then will show that if a r.v. T follows the Fizzle-Logistic distri-
bution as

PT {T ≤ t} =
1

ZT

λ exp { βN
1−θ (t

1−θ − t1−θ0 )}
1 + λ exp { βN

1−θ (t
1−θ − t1−θ0 )}

(9)

, where ZT is the normalization factor and λ is a constant, then its

integral of fizzling effect X =
∫ T
t0
t−θdt = T1−θ

1−θ −
t1−θ0
1−θ shall

follow the Logistic distribution. When θ < 1, for any x ≥ t1−θ0
θ−1

,

PX{X ≤ x} = PT {
∫ T

t0

t−θdt ≤ x}

= PT {
T 1−θ

1− θ −
T 1−θ
0

1− θ ≤ x}

= PT {T ≤ [(x+
t1−θ0

1− θ )(1− θ)]
1

1−θ }

=
1

ZT

λ exp{βNx}
1 + λ exp{βNx}

which shows that X follows Logistic distribution. When θ > 1,

for any x < t1−θ0
θ−1

, similar procedures as above can prove that X
follows Logistic distribution. �

LEMMA 3. When θ = 0, the NETTIDE-Node follows the Lo-
gistic growth dynamics, e.g. SI model, which is a special case of
Lemma (2). When n(t) � N , the Logistic growth approximates
to the exponential growth as:

n(t) = n0 exp {βN(t− t0)} (10)

PROOF. Replace the θ in Equation (7) and Equation (8) with 0.
�

Justification of the NETTIDE-Node:
• Temporal fizzling. Instead of capturing the temporal fizzling

effect of each individual by β

(t−ti)θ
, where ti is the time of

i entering the system, we describe the fizzling growth of the
system by β

tθ
, where t is the time tick since the inception of

the whole system. Because the models capture the integral of
individual decay like dn(t)

dt
= n(t0) +

∑
ti≤t µi

1
(t−ti)θ

can
only generate exponential growth or power law growth with
exponent < 2 (as discussed in related work section). It fail-
s the reality (non-exponential growth, or power law growth
with arbitrary exponent like ≥ 2). In contrast, our NET-
TIDE-Node fits the real data very well (in Experiment sec-
tion), and can encompass a large range of growth patterns:
power law early-growth with arbitrary exponent, the gener-
al form fizzle-exponential early-growth, and the exponential
early-growth as a special case.

3.3 NETTIDE-Link
The growth of social network can never be limited to nodes on-

ly. There are no such differential equations to describe the growth
dynamics of links before. Here, we give NETTIDE-Link to capture
link growth dynamics.

We assume that there exists underlying organizational structure
as the context of social network formation and growth. For exam-
ple, the formation and growth of co-author social networks is con-
strained by the organizational structures such as mentor-students
and researcher-collaborators structures. Hence, we need to take
into account the characteristics of the underlying organizational
structure when modeling the network growth. We define the under-
lying organizational structure as graph G0, and the linking process
is described as follow: for each existing node i, i tries to link to
his already existing neighbor j in G0 . If there is a link already
being there, then nothing happens. If the link from i to j has not
been established yet, i tries to link j with rate β′ over the tempo-
ral fizzling term tθ . The arrival of new nodes will bring a constant



number of external links. The NETTIDE-Link summarizes above
linking process:

de(t)

dt
=
β′

tθ
n(t)(α(n(t)− 1)γ − e(t)

n(t)
) + 2

dn(t)

dt
(11)

Justification of the NETTIDE-Link:
• External links. 2 dn(t)

dt
captures the process where a newly-

arriving node bring two new links because we treat a link as
bidirectional link. The assumption is that we treat the first
link of each newly-arriving node as the external link. Also
we can elaborate on it, like treating the first m links of the
newly-arriving node being made at the same time.
• Internal links. Internal links are built between the already-

existing nodes, and thus give rise to the densification. For
each existing node, he tries to link the existing neighbors in
G0 which have not being linked. Because of the organiza-
tional structure, less-than-full existing nodes can be accessed
and α(n(t) − 1)γ captures the average accessible existing
neighbors. The term e(t)

n(t)
is the average number of already

linked neighbors to be excluded. The β′

tθ
captures the fizzling

linking rate.
• Densification. By empirical analysis in experiment section,

the link equation captures the densification power law by the
power-law sparsity exponent γ. The densification power law
between links and nodes are 1 + γ.

3.4 NETTIDE parameter learning
The NETTIDE for node and link together has a parsimonious set

of parameters, namely, β, θ,β′, α, γ and N . Our parameter learn-
ing process has two steps: to learn node equation, and to learn link
equation. Given the real node growth sequence n(t), we aim to
minimize the sum of the square errors:

∑T
t=t0

(n(t) − n∗(t))2,
by using the Levenberg-Marquardt algorithm (LM) [28], which is
widely used to solve non-linear least squares problems [30, 13, 33].
As for link equation, given the real link and node growth sequence
e(t) and n(t), and the temporal fizzling exponent θ learned by the
node step, we follow the same procedure as the node step to mini-
mize the sum of the square errors:

∑T
t=t0

(e(t)− e∗(t))2.

3.5 Microscopic explanation
Our NETTIDE can be explained on microscopic level easily. To

begin with, we need the underlying organizational structure G0,
the maximal growth rate of nodes β, the temporal fizzling expo-
nent θ, and the maximal linking rate β′. Consider the G1(t) =
(Node(t), Edge(t)) is the evolving network over G0. Node(t)
and Edge(t) are the existing nodes and links in the system G1 at
time t. We can initialize Node(t0) by random or just give the ini-
tial state as input to describe the burn-in period of the system. The
same goes with Edge(t0). For any existing node i in Node(t) at
time t, i tries to activate each of his neighbors, like j in G0.
• Node growth. If j has not existed in G1 yet, then i tries to

invite j to join with probability p ( p = βN

〈k〉tθ dt , where 〈k〉
is the average degree) in the small time interval [t, t + dt)
(dt = 1 for the discrete case). If success, we add j to the
Node(t) with timestamp t.
• Link growth. If j has been in G1 but not being linked to i in

the G1 yet , then i tries to build a link to j with probability q
( q = β′

tθ
dt) in the small time interval [t, t+ dt). If success,

we add (i, j) to the Edge(t) with timestamp t.
• Activity. If j has being in G1 and being linked to i in the

system already, then i can talk with (any activities supported

in this specific organizational context) j, but no change to the
G1(t) we care about. As the process continues, the network
G1 grows with time.

This process is one of the plausible microscopic explanation to
describe the growth dynamics of nodes and links. It can be used and
extended flexibly, to allow for the structure properties (e.g. with
whom to linked in Link growth step) and the user activities (in Ac-
tivity step). For reproducibility, we open our code, see Section 5.

4. EXPERIMENTS
In this section, we evaluate the effectiveness of NETTIDE on a

range of real growing social networks at large scale. Here we report
experiments to answer the following questions:
Q1. Accuracy. Can the NETTIDE accurately capture the growth

dynamics of both node and link in real social networks?
Q2. Usefulness. How well do the NETTIDE forecast n(t) and e(t)

in both near and far future?

4.1 Datasets
WeChat on-line social network. WeChat is one of the largest

on-line social network in China, which was claimed to have more
than 653 million monthly active users by September 30, 2015. We
collected the history data of WeChat which consists of complete
records of the node and link growth from January 21, 2011 (the
day WeChat was released), to January 16, 2013 when the registered
users reached 300 million. In total, there are 300 million nodes
(registered users rather than monthly active users) and more than
4.75 billion links. The records document the adding time of each
user and the establishment timestamp of each social link. Thus, we
recover the growth dynamics of both nodes and links from the in-
ception of WeChat. We treat the bidirectional relationships between
users as two links. Besides, we validate the forecasting capability
of our model by five latest snapshots of the WeChat social networks
from December 17, 2015 to January 14, 2016. All the WeChat data
that we could access were anonymized for strict privacy policy.

ArXiv co-authorship network. This is the scientific collaboration
network covering almost a decade since its inception [1]. If any two
persons were in the author lists of one paper, then they formed an
bidirectional link with timestamp being the date of its publication.
The join date of a person is represented by the date of his first pub-
lication in this dataset. The dataset covers the period from March
1992 (near the inception of the arXiv) to March 2002. By filtering
the links without explicit date, there are totally 16, 959 nodes and
2, 388, 880 links.

Enron enterprise social network. Through the email records of
Enron [18], we recover the enterprise social network emitted from
the staff of Enron. The dataset covers the period from January
1998 to July 2002, during which Enron bankrupted on December
2, 2001, causing a sharp cut-off of the n(t). In all, there are 86, 458
nodes and 594, 998 links.

Weibo information cascading network. We choose one large in-
formation cascading social network in Tencent Weibo [35], which
is formed by the diffusion of a meme about a popular game. There
are 165, 147 nodes and 331, 607 links, revealing the social network
driven by users’ interest in this game.

4.2 Q1: Accuracy
We validate the NETTIDE by answering Q1, to find out whether

our model can capture the growth dynamics of node and link in real
social networks.

4.2.1 Evaluation methods
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Figure 2: NETTIDE fits reality. Our model fits the growth dynamics of four real social networks very accurately. The four rows
corresponds to WeChat (a-b), arXiv (c-d), Enron (e-f) and Weibo (g-h) respectively. In each row, there are three checkpoints: n(t)
and e(t) in the first figure, and the e(n(t)) in the second figure.

We conduct the experiments in four different real social networks
and set three checkpoints to give the empirical evidence for the va-
lidity and the generality of our NETTIDE model. The three check-
points are node cumulative dynamics n(t), link cumulative dy-
namics e(t), and the densification of the links against the nodes

e(n(t)). We also consider other four methods discussed in Sec-
tion 2 as baselines for comparison: Susceptible-Infected (SI), Bass
model, SpikeM, and Phoenix-R (PHR). All these methods are de-
signed for nodes, thus not applicable to links. We learn the param-
eters of these baselines the same as our model, i.e. the LM algo-



rithm discussed in Section 3. The microscopic models based on the
point process, like Coevolve, are not applicable to our datasets due
to their complexity and the need of spreading data. Thus, there is
no competitor for link growth dynamics.

We evaluate the overall fitting accuracy by the Normalized Root
Mean Square Error (NRMSE). Given two series, for example the
real node growth sequence n(t) and the corresponding sequence

n∗(t) given by our model, NRMSE=
√

1
T

∑T
t=1(n(t)−n∗(t))2

max(n(t))−min(n(t)) . As
a special case when T = 1, NRMSE degenerates to Absolute Per-
centage Error (APE(x, x∗) = |x−x∗|

x
). NRMSE is consistent with

the objective function of the LM algorithm in the sense of L2 nor-
m. And also it can be compared between datasets with different
scales. We also compare the performance by other standard metric,
namely Mean Absolute Percentage Error (MAPE). We get consis-
tent conclusion and thus we do not report it for brevity. Table 3
shows the description of the best fitting parameters to four datasets.
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Figure 3: NETTIDE outperforms baselines. NETTIDE-Node
consistently outperform all the baselines with lowest error with
respect to NRMSE. NETTIDE-Link fits all the datasets with
very low error. All the baselines are not applicable to the links.

Table 3: The parameters of NETTIDE best fitting each dataset.
N βN θ β′ α γ

WeChat 6.1B 2.16 0.995 0.03 0.14 0.47
arXiv 12584 8.81 1.35 7.56 0.28 0.74
Enron 458143 155.14 1.96 751.19 1.30 0.16
Weibo 18935 0.50 0.84 0.030 1.68 0.02

4.2.2 Value and shape accuracy

Table 4: The comparison of the accuracy of NETTIDE and
baseline methods on three checkpoints of the growth dynamics
of four real social networks. With respect to the Normalized-
RMSE, NETTIDE consistently outperforms baselines. All the
baselines are not applicable (—) to the links.

WeChat n(t) e(t) e(n)
NETTIDE 0.76% 0.66% 1.08%
SI 8.32% — —
BASS 8.31% — —
SPIKEM 20.33% — —
PHR 6.73% — —
arXiv n(t) e(t) e(n)
NETTIDE 0.35% 2.18% 3.32%
SI 5.97% — —
BASS 0.88% — —
SPIKEM 7.95% — —
PHR 2.03% — —
Enron n(t) e(t) e(n)
NETTIDE 1.51% 4.54% 4.62%
SI 3.84% — —
BASS 1.51% — —
SPIKEM 1.63% — —
PHR 1.99% — —
Weibo n(t) e(t) e(n)
NETTIDE 2.15% 2.15% 0.06%
SI 14.19% — —
BASS 2.31% — —
SPIKEM 2.62% — —
PHR 4.45% — —

Our NETTIDE accurately fits growth dynamics of both nodes and
links of WeChat, which span 726 days from the release. The fitting
results of the five checkpoints, as depicted in Fig 2a-b, show that
the results of our NETTIDE almost overlap all the real data points.
The fitting covers the period (just after the release of WeChat V2.0,
which includes voice notes) during which WeChat gained its ma-
jor population, and we treat the first 199 days as the burn-in period
because of the unstable version update of the WeChat, and a rela-
tively small number of users and links (5.8% of the total nodes and
1.8% of the total links in our data). For the cumulative number,
the overall errors between NETTIDE and real data are less than 1-
percent, 0.76% and 0.66% for n(t) and e(t) respectively (Table 4).
The densification relationship between n(t) and e(t) is perfectly
described by NETTIDE, with overall error 1.08%. Besides, on-
ly our NETTIDE-Link is capable of capturing the link dynamics
(Fig 3b).

We then validate NETTIDE by arXiv and Enron. Our NETTIDE
fits their growth dynamics accurately again, despite the facts of
longer time span (5 and 10 years respectively), the tendency to satu-
ration, and the unanticipated factors (the bankruptcy of Enron). The
fitting covers the period during which two social networks gained
is 99-percent population, ignoring the first 1-percent population as
in the burning period. We binned the growth dynamics of these two
data by month (a proper granularity for co-authorship or enterprise
context). The red and blue curves by our NETTIDE almost overlap
all the real data points of arXiv (Fig 2c-d) and Enron (Fig 2e-f).
Specifically, NETTIDE-Node gets the lowest error 0.35% (1.51%)
in the arXiv (Enron) case compared with baselines, as shown in
Fig 3a. Besides, NETTIDE-Link captures the link growth accu-
rately, 2.18% and 4.54% for arXiv and Enron respectively. All the
baselines are unable to describe the link growth dynamics as shown



in Fig 3b.
At last, we validate NETTIDE by Weibo, which is a volatile net-

work and exhibits large fluctuations. Nevertheless, our NETTIDE
captures the growth dynamics of Weibo well again. We binned
the growth dynamics by 5 minutes because of its volatile nature.
Though the daily fluctuations (as shown in Fig 2g) introduce a rel-
atively large error of n(t) (Table 4), the fitting results of n(t) and
e(t) are still good. Specifically, NETTIDE-Node and NETTIDE-
Link get 2.15% and 2.15% error for n(t) and e(t) respectively.
Still the lowest error for n(t) and no baselines for e(t) are shown
in Fig 3b.

Only our NETTIDE can capture the growth dynamics accurately
in both value and shape aspects. So far, NETTIDE has manifested
its ability to capture growth dynamics by the right shape of curves
among the real points and the lowest overall fitting error. What’s
more, our NETTIDE-Link is unique in capturing the link growth
dynamics. Thus, the rhetorical question is whether our NETTIDE-
Node is also unique in its ability to capture the node growth? All
the state-of-the-art baselines fail to capture the growth of nodes in
either shape or value aspects: The exponential growth nature of
SI and Bass at early stage deviates from the real data seriously,
causing failure in modeling the growth of WeChat with power law
growth. The SI and Bass have very similar performances in the
WeChat case, with errors up to 10.0 times greater than the results
of NETTIDE-Node. In other datasets, SI also deviates from the real
seriously as shown in Fig 3a, with errors 16.1, 1.5 and 5.6 times
greater than our fitting for arXiv, Enron and Weibo respectively.
Though the incorporating of market growth in Bass model reduces
the error compared with SI, the exponential shape of Bass curve at
early stage is totally wrong with our power-law like observations.
The performance of SpikeM in different datasets varies a lot. The
best fitting of SpikeM in the WeChat and Weibo cases lie in the
sub-critical regime of the hawkes process. However, the SpikeM
reports the largest errors (25.8 times greater than NETTIDE-Node)
in the WeChat case, while a relatively low error (21.9% greater than
NETTIDE-Node) is reached in Weibo. The super-critical regime,
which generates exponential growth at early stage, is reached in fit-
ting the arXiv and Enron, with errors 21.7 times and 8.0% greater
than NETTIDE-Node respectively. The problems of wrong shape
and largely fluctuated errors also come with Phoenix-R: it report-
s the lowest error among the baselines in WeChat, still 7.9 times
larger than our NETTIDE-Node. The errors of Phoenix-R are 4.8,
1.1 times greater than NETTIDE-Node for for arXiv and Weibo,
and 31.8% greater than NETTIDE-Node for Enron.

In all, only our NETTIDE correctly approximates the node and
link growth dynamics of real social networks, in both value and
shape aspects.

4.3 Q2: Usefulness-forecasting
We show the practical value of our NETTIDE by answering Q2,

to forecast both the count of nodes and links, in the short term and
in the long term.

4.3.1 Short-term forecasting
In the short-term forecasting setting, we validate NETTIDE’s

forecasting capability by examining the overall predictive error into
the future (overall forecasting task) and the arrival of some check-
points marked as milestones (milestone forecasting task). Specif-
ically, taking WeChat as an example, by training the dynamics of
nodes within first 100 million : the overall forecasting task is to
examine how well NETTIDE-Node forecast the growth dynamics
of next 200 million nodes; the milestone forecasting task is to fore-
cast the date when WeChat network doubles and triples its size. We

denote the t1, t2, t3 as the date of the milestones. In WeChat case,
they are the dates when WeChat network hit its first 100, 200, 300
million nodes respectively, as shown in Fig 4a. In arXiv case, they
are the dates of reaching 3000, 6000, 9000 authors respectively, in
Fig 4c. The same task goes with NETTIDE-Link, in which case the
number of links is seldom predicted before.

Overall forecasting. Both NETTIDE-Node and NETTIDE-Link
can forecast future dynamics very accurately, covering 291 and
730 days in the future for WeChat and arXiv respectively. In the
WeChat case, the overall errors are 2.18% for n(t) and 0.44% for
e(t) between the forecasting results by NETTIDE and the real dy-
namics from t1 to t3 (Fig 4a). For the arXiv, the overall errors are
2.86% and 4.18% for n(t) and e(t) respectively (Fig 4c) from t1
to t3 . As a reference, we compare our forecasting results with SI:
the sigmoid curve seriously overestimates the growth with overal-
l error 134.62% for n(t) in WeChat case, and underestimates the
n(t) of arXiv with overall error 52.14%. The SI is not applicable
to the e(t) (no dashed lines for Link in Fig 4).

Milestone forecasting. Both NETTIDE-Node and NETTIDE-
Link can forecast the arrival of milestones with very low error, both
for the date and the count. Specifically, in WeChat case shown in
Fig 4a, NETTIDE-Node forecast the arrival of first 200 million n-
odes 5 days earlier than the real date t2 (172 days ahead into the
future), and the arrival of first 300 million nodes 10 days later then
real date t3 (291 days ahead into the future). At t2 and t3, the
forecasting errors are 1.67% and 2.58% for n(t), and 0.26% and
0.33% for e(t) respectively. As for the arXiv network, despite the
fact that the t2 (t3) is 420 (810) days ahead into the future, NET-
TIDE-Node can forecast the arrival of the milestones (6000, 9000
authors) within one month centering the real date. (The time gran-
ularity we choose is just one month for arXiv and Enron.) The
forecasting errors at t2 and t3 are 0.91% and 2.47% for n(t) re-
spectively, while 11.32% and 2.75% for e(t). In contrast, the re-
sults of nodes predicted by SI are seriously biased: in WeChat case,
93 days earlier for t2 and 167 days earlier for t3; the deviations in-
crease with time, more than 300% deviation at t3. As for the arXiv,
SI seriously underestimates the number of the nodes at milestones:
more than 260% underestimation at t3. Again, there are no base-
lines for link growth.

In all, our NETTIDE achieves a surprisingly high forecasting ac-
curacy for both node and link growth in the short term.

4.3.2 Long-term forecasting, 2 years ahead
Our NETTIDE also shows accurate forecasting results in the long

term, 730 and 870 days ahead into the future for WeChat and arXiv
respectively.

As for the WeChat case, NETTIDE-Node can forecast the num-
ber of nodes 730 days ahead into the future accurately (Fig 4b). We
train NETTIDE-Node by the growth dynamics before t3, and then
we validate the forecasting results of NETTIDE in the long term
by 5 latest snapshots of the WeChat social network. The 5 latest
checkpoints span more than one month (December 17, 25, 2015,
and January 1, 8, 14, 2016). For the privacy issues, we do not re-
port the exact number of registered users and the number of links.
We set the initial total population to 6.1 billion, the smart-phone
users globally by 2020, reported by Ericsson2. Because one user
can only register the WeChat successfully through the verification
of his phone number. The errors for n(t) at these five checkpoints
are consistently low, 2.86%, 2.72%, 2.68%, 2.68% and 2.64% for
each checkpoints respectively. However, the node growth curve
of SI seriously overestimates the real node growth: the saturation

2http://www.ericsson.com/mobility-report
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Figure 4: NETTIDE forecasts future well. The points represent real data, black filled for training, and the dashed for validation.
The red and blue lines are the forecasting results of NETTIDE-Node and NETTIDE-Link respectively. The gray dashed lines are the
results of SI. The above panel is the results of WeChat, and the below is arXiv. (a) and (c) are the results of the short term forecasting,
while (b) and (d) are the results of the long term case.

point is reached much earlier, and with 350% deviation with the
real data at 2016/1/14.

In the arXiv case, NETTIDE can forecast both the n(t) and e(t)
accurately in the long term, 870 days ahead into the future as shown
in Fig 4d. We train both NETTIDE-Node and NETTIDE-Link by the
real growth dynamics before t3, and we get overall error 2.84% for
n(t) and 3.56% for e(t), covering 870 days in the future. Howev-
er, the forecasting results of the number of nodes by SI seriously
underestimates the real number, up to 200% off the reality.

5. CONCLUSIONS
In this paper, we studied the growth dynamics of real social

networks and presented NETTIDE to capture both node and link
growth dynamics. We examine a range of real evolving social net-
works, especially China’s largest on-line social network WeChat,
and find that both node and link in real social networks follow n-
ear power law growth dynamics, rather than the exponential early
growth or uniform growth as expected. Thus, we propose NET-
TIDE, along with differential equations for the growth of the num-
ber of nodes, as well as links. Our NETTIDE-Node gives the unified
but parsimonious model to capture real social network growth, like
the power law early-growth of the Log-Logistic, and the general
form Fizzle-Exponential early-growth of the Fizzle-Logistic. Our
NETTIDE-Link is the first-ever differential equation to capture the
growth dynamics of links, accurately fitting reality. The main con-

tributions are:
1. Novel model NETTIDE: NETTIDE-Node captures a large

range of real growth dynamics and NETTIDE-Link is the first
differential equation to capture the link growth dynamics.
Both equations are parsimonious and explainable on micro
level.

2. Accuracy: We presented experiments on four real evolving
social networks, especially the WeChat (300 million nodes,
4.75 billion links). Our NETTIDE model matches the real
growth patterns accurately.

3. Usefulness: Our NETTIDE can be used to do both the short-
term and long-term forecasting. We validated NETTIDE’s
forecast power empirically, and showed that it can forecast
the nodes and links in the short term and even the long ter-
m accurately (730 and 870 days ahead into the future for
WeChat and arXiv respectively).

Reproducibility: We have already open-sourced our code of the
NETTIDE process to generate the growth dynamics of both nodes
and links, at https://github.com/calvin-zcx/NetTide. Several of the
datasets are public[1, 18].
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