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ABSTRACT

How do people make friends dynamically in social networks?
What are the temporal patterns for an individual increasing
its social connectivity? What are the basic mechanisms
governing the formation of these temporal patterns? No
matter cyber or physical social systems, their structure and
dynamics are mainly driven by the connectivity dynamics of
each individual. However, due to the lack of empirical data,
little is known about the empirical dynamic patterns of social
connectivity at microscopic level, let alone the regularities or
models governing these microscopic dynamics.

We examine the detailed growth process of “WeChat”,
the largest online social network in China, with 300 million
users and 4.75 billion links spanning two years. We uncover
a wide range of long-term power law growth and short-term
bursty growth for the social connectivity of different user-
s. We propose three key ingredients, namely average-effect,
multiscale-effect and correlation-effect, which govern the ob-
served growth patterns at microscopic level. As a result, we
propose the long short memory process incorporating these
ingredients, demonstrating that it successfully reproduces
the complex growth patterns observed in the empirical data.
By analyzing modeling parameters, we discover statistical
regularities underlying the empirical growth dynamics. Our
model and discoveries provide a foundation for the micro-
scopic mechanisms of network growth dynamics, potentially
leading to implications for prediction, clustering and outlier
detection on human dynamics.
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1 INTRODUCTION

In recent years, much effort has been made to model the
growth of social networks, ranging from reproducing the sta-
tistical properties of structures [4], to modeling the growth
dynamics of nodes and links [25], aiming to enhance our
understanding on complex social systems. In microscopic
view, the structures and dynamics of complex social systems
are mainly driven by the growth dynamics of individual’s
social connectivity. However, little is known about this mi-
croscopic dynamics in reality, mainly due to the lack of large
scale datasets recording the detailed social network evolution.
Thus, fundamental questions as follows are largely unknown:
What are the dynamic growth patterns of an individual’s
connectivity in social networks? What are the plausible
regularities governing these microscopic growth dynamics?
Can we unify the connectivity growth dynamics of largely
heterogeneous individuals into a simple mathematic model?
Answering to these questions not only advances our under-
standing on the evolution of complex social systems, but also
delivers models to capture human dynamics at microscopic
level, leading to applications for predicting future growth,
clustering typical modes of human dynamics, and detecting
outliers.

In literature, the studies on microscopic connectivity dy-
namics are mainly conducted theoretically. The Barabási-
Albert model [4] which generates scale-free network, predicts
the scaling relationship between the connectivity and the time
with exponent 0.5. The fitness model [5] extends this expo-
nent to a fitness function with range < 1. However, these
theoretical hypotheses ignore the ubiquitous densification
phenomenon [15], and the empirical growth dynamics may
have exponent value ≥ 1. Recently, a paucity of empirical
studies are conducted. Ref.[14] finds the rate of connectivity
grows with current degree in a mean-field setting, indicating
a superlinear growth in average, but they ignore the large
heterogeneity among different users. Ref.[2] reports that the
rate of connectivity is constant, indicating a linear growth in
average, but the result is also from a mean-field setting and
the connectivity timestamps are simulated from user behav-
ior logs rather than explicitly recorded. Thus, the growth
dynamics of social connectivity of each individual has not
been empirically explored or theoretically studied.
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Figure 1: Microscopic social connectivity features various power law growth in the long term and bursts in the
short term. LSmP fits reality well. (a)(e)(i) plot three instances of different growth patterns: the accelerating
power law growth, linear growth, and decelerating power law growth, respectively. The same plots on log-log
scale are shown in the upper insets, while the lower insets illustrate short-term bursts. Each row describes
different aspects of the same empirical dynamics. (b) (f) (j) plot inter-event time (IET) distributions. (c)(g)(k)
plot the empirical joint distributions of consecutive IETs, while (d)(h)(l) are the counterparts generated by
LSmP. Our model fits the reality well on all the aspects.

In this paper, we study the detailed evolution traces of
WeChat from zero to 300 million users and 4.75 billion friend-
ships spanning two years. The dataset explicitly records
when and how a link is established between whom and whom,
serving as one of the largest datasets which support this
study. From this dataset, we find the growth dynamics of
social connectivity exhibit rich complexities which are far
beyond our current understanding. Figure 1 showcases the
growth dynamics of three individuals over two years, we
find: i) a wide range of power law growth in the long term,
and ii) stochastic bursts in the short term. Based on these
empirical observations, we propose three ingredients, i.e.,
average-effect, multiscale-effect, and correlation-effect, which
govern the growth dynamics. We then propose a stochastic
model, Long-Short-memory Process (LSmP), incorporat-
ing these ingredients, to characterize the empirical dynamics.

The effectiveness of LSmP is validated in multiple aspects.
By analyzing the modeling parameters, we find statistical
regularities underlying these growth dynamics. By clustering
in the parameter space, we find three typical modes of social
connectivity growth in the long term, and two typical modes
in the short term. We also illustrate that outliers can be
easily detected with clear explanation in the parameter space.
In summary, the contributions of this work are as follows:

• Findings: The growth dynamics of social connectiv-
ity features long-term power law growth and short-
term bursts. We find three ingredients, i.e., average-
effect, multiscale-effect, and correlation-effect ac-
counting for the power law and bursty growth dy-
namics.



• LSmP model: A stochastic model captures above
findings. It is parsimonious, and the parameters have
clear physical meanings.

• Accuracy: LSmP accurately fits the growth dynam-
ics.

• Usefulness: LSmP provides insightful understand-
ings on human dynamics, and implies applications in
prediction, clustering, pattern discovery, and outlier
detection, etc.

Reproducibility: Our code is open-sourced at github.
com/calvin-zcx/LSMP

The outline of the paper is the typical one: survey, pro-
posed method, experiments, and conclusions.

2 RELATED WORK

As the investigated problem is closely related to network
evolution and human behavior dynamics, we mainly review
the related works in these two fields.

Network evolution. The Barabási-Albert model (BA)
[4] predicts the dynamics of individual’s connectivity scales

against time with exponent α = 0.5 (k(t) ∼ t1/2). The fitness
model [5] extends the BA model to heterogeneous connec-
tivity dynamics, with scaling exponent α < 1. However,
we find empirical connectivity dynamics are more complex:
the dynamics with scaling exponent α >= 1 are prevalent.
Recently, a paucity of empirical studies are conducted. [14]
finds the rate of connectivity grows with current degree in a
mean-field setting, and ignores the large heterogeneity among
different users. [2] reports that the rate of connectivity is
constant, but the result is also from a mean-field setting
and the connectivity timestamps are simulated from user
behavior logs rather than explicitly recorded. [25] examines
several large social networks and finds the power law growth
for both nodes and links over time, implying that the average
connectivity scales with time. In all, how the connectivity
dynamics grows at an individual level is largely unaddressed.

Human dynamics. Human dynamics often exhibit burst-
s and heavy-tailed inter-event time (IET) distribution [3].
Priority queue model [23] and modulated Poission model [16]
may account for IET’s fat-tail nature. Recently, evidences of
multiscale nature of IET distribution [27] have been found,
including bimodal distribution [24] at long-scale, and quick
actions at short-scale [27]. However, they treat the IETs
independent identically distributed, ignoring their correla-
tions [12]. Two lines of works try to capture the bursts and
correlations: the self-exciting process [7, 11, 20], and the
self-feeding process [1, 10, 22]. However, none of them can
generate both power law growth with arbitrary exponent and
mutiscale IET distribution as we observed in the empirical
dataset.

3 PROPOSED METHOD

In this section, we present the ingredients accounting for the
long-term power law growth and short-term bursts, and then
propose our stochastic model based on these ingredients.

Table 1: Symbols and Definitions

Symbols Definitions

n(t) Cumulative number of events by time t for a specific user
ti The time of event i
τi The interevent time (IET) between event i and i− 1
Ht The history of previous events by t, a list of event times

λ(t|Ht) The hazard function of LSmP
Φ∞(t) The hazard function for long-term memory
λ∞ The long-term event rate
α The long-term growth exponent

∆∞ The long-term time scale
Φ0(t) The hazard function for short-term memory
λ0 The short-term event rate
θ The short-term fizzling exponent

∆0 The short-term time scale
m Memory length of short-term memory

3.1 Model Intuition

Here we introduce the intuition and backgrounds to motivate
the model design.

Ingredients for power law growth. Zang et al. [25]
proposed a dynamic model to capture the growth dynam-

ics of the number of nodes n(t) in social networks: dn(t)
dt

=
β

tθ
n(t)(N − n(t)), where N is the ceiling size and β is the

growth rate. It generates a variety of growth patterns, in-
cluding power law growth as a special case when θ = 1 and
n(t)� N . By defining α = βN , we get the equation which
generates power law growth for n(t):

dn(t)

dt
=
α

t
n(t). (1)

Thus, when the fizzling exponent θ = 1, this equation indi-
cates the physical meaning at microscopic level: the rate of

making friends dn(t)
dt

at present is proportional to the long-

term average rate n(t)
t

, and this long-term memory is kept
by the behavior of making n(t) friends so far. We name it
average-effect which generates the power law growth.

Ingredients for bursts. Human behaviors often exhibit
multiscale IET distribution [27] as shown in Fig.1b, taking on
flat short-scale, fat-tailed middle-scale, and the exponential-
like long-scale. When we i.i.d. sample IETs from a multiscale
distribution, a sequence of small value IETs occur in short-
scale, followed by large value IET in the middle-scale and long-
scale, generating intense activities followed by long vacation,
namely, bursts. Thus, the multiscale IET distribution, which
captures the short-term memory since last event, generates
bursts. We denotes this ingredient as multiscale-effect.

Given a Poisson process exhibiting non-bursty growth,
if we rearrange the IET sequence as follows: make small
value IET followed by smaller IET, and make large value
IET followed by larger IET, and then we also get bursty
behaviors. Thus, the correlations between IETs can also
generate bursts. Figures 1cg&k plot the joint distribution
of two consecutive IETs from real data. If the IETs are
independent, the points on joint distribution should spread
out, while in reality the dots are clustered, e.g., red dots,
which support our conjecture of correlated IETs. Indeed, the
corresponding growth dynamics in Figs. 1ae&i, along with

github.com/calvin-zcx/LSMP
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the lower insets, exhibit bursts in the short-term. We name
this ingredient as correlation-effect.

Model framework: temporal point process. The
process that a user will add friends at a specific time epoch
is a (stochastic) temporal point process. Mathematically, we
want to know the time t of the next event, and let f(t|Ht) be
the conditional probability density function of the time of the
(n+1)th event conditioned on all the events in historyHt, and
its corresponding cumulative distribution function is F (t|Ht).
This temporal point process is intuitively and uniquely speci-
fied by the hazard function λ(t|Ht) [8]. The hazard function
λ(t|Ht) = E[n(dt)|Ht]/dt describes the rate of the occurrence
of the event given the history Ht = (t1, ..., tn−1, tn) of previ-
ous events, where n(dt) denotes the number of events falling
in [t, t + dt) and n(t) stands for the cumulative number of
events falling in (−∞, t). The relationship between hazard
function and the conditional probability density function is

λ(t|Ht) = f(t|Ht)
1−F (t|Ht) and f(t|Ht) = λ(t|Ht)e−

∫ t
tn
λ(s|H)tds.

3.2 The LSmP model

Here we propose the Long-Short-memory Process (LSmP),
which is based fundamentally on the average-effect, multiscale-
effect, and correlation-effect to capture the long-term power-
law growth and short-term bursts of social connectivity. The
hazard function specifying the LSmP is:

λ(t|Ht) = λ∞α(
t

∆∞
+ 1)

α−1

︸ ︷︷ ︸
Long-term memory Φ∞(t|Ht)

+

n(t)∑
i=n(t)−m+1

λ0(
t− ti
∆0

+ 1)
−θ

︸ ︷︷ ︸
Short-term memory Φ0(t|Ht)

= Φ∞(t|Ht) + Φ0(t|Ht)
(2)

3.2.1 Long-term memory. We first show the average-effect
generates power-law stochastic growth, taking on long-term
memory.

Lemma 3.1. The average-effect, namely the present hazard
rate Φ∞(t|Ht) is the the mean value of its previous hazard
rate from −∆∞, generates power law dynamics with arbitrary
exponent α.

Proof. We formulate the average-effect as:

Φ∞(t|Ht) =
α

t+ ∆∞

∫ t

−∆∞
Φ∞(s|Ht)ds, (3)

and replace the integral term by the equation
∫ t
−∆∞

Φ∞(s)ds =

λ∞∆∞( t
∆∞

+ 1)α, we get:

Φ∞(t|Ht) = λ∞α(
t

∆∞
+ 1)

α−1
. (4)

�

The Φ∞(t|Ht) = λ∞α( t
∆∞

+ 1)α−1 captures the long-

term power law growth dynamics of adding friends in the
temporal point process framework, serving as the stochastic
counterpart of the dynamic differential equation 1 in Sec. 3.1.
Justification of the model:

Various power law growth. As shown in Sec. 3.1, the
α is the average number of new friends introduced by one
existing friend in n(t) at time interval (t, t+dt). When α > 1,

the accelerating power law growth appears, implying a rich-
get-richer phenomenon: more friends you have, much more
friends you will have in the future. When α = 1, Φ∞(t|H)
equals to λ∞, indicating that n(t) is supposed to have a
constant growth rate without long-term memory. In contrast,
when α < 1, n(t) exhibits decelerating power law growth.
Three instances are shown in Figs. 1ae&i.

Long-scale of multiscale-effect. The range of long-
scale is controlled by λ∞ and α. When α = 1, Φ∞(t|Ht)
degenerates to the Poisson process, which captures the routine
activities of adding friends. Specifically, an event is expected
to occur with an average inter-event time λ−1

∞ with deviation
controlled by ∆∞, as shown in Fig. 1b. When α increases, the
exponential mode in the tail part moves towards left, implying
a smaller τ and thus an accelerating n(t). In contrast, when a
decreases, the second mode of f(τ) moves to right, implying
a larger τ and thus a decelerating n(t).

Long-term correlation of IETs. When α 6= 1, the long-
term memory appears, taking on long-term IETs’ correlations.
Indeed, when α ≥ 1, IETs tend to become shorter and shorter,
while when α ≤ 1, IETs become larger and larger, implying
an increasing and a saturated circle of friends, respectively.

3.2.2 Short-term memory. The short-term memory Φ0(t|Ht)
captures the multiscale-effect and correlation-effect, which
generate bursty dynamics.

Lemma 3.2. The λ(t|Ht) generates constant short-scale,
power law middle-scale and exponential long-scale when α =
m = θ = 1.

Proof. The conditional probability density function of
the time of the next event, say (n+ 1)th event, is (refer to
Sec. 3.1):

f(t|Ht) = λ(t|Ht)e
−

∫ t
tn

λ(s|Ht)ds

= (Φ∞(t|Ht) + Φ0(t|Ht))e
−

∫ t
tn

Φ∞(s|Ht)dse
−

∫ t
tn

Φ0(s|Ht)ds

= [λ∞α(
t

∆∞
+ 1)

α−1
+

n∑
i=n−m+1

λ0(
t− ti
∆0

+ 1)
−θ

]

× e−λ∞∆∞[( t
∆∞

+1)α−(
tn

∆∞
+1)α]

×
n∏

i=n−m+1

e
−

∫ t
tn

λ0(
s−ti
∆0

+1)−θds

The condition α = 1 excludes the effect of long-term memory.
When m = 1, the short-term memory is solely determined by
the fizzling effect, indicating the independency between any
two consecutive events. Thus λ(t|Ht) describes a renewal
process where f(t|Ht) = f(τn+1) = f(τ). When θ = 1,

f(t|Ht) = [λ∞ + λ0(
t− tn

∆0

+ 1)
−1

]e
−λ∞(t−tn)

(
t− tn

∆0

+ 1)
−λ0∆0

≈ λ0(
t− tn

∆0

+ 1)
−(1+λ0∆0)

e
−λ∞(t−tn)

, when λ∞ � λ0

Thus, when α = m = θ = 1, the IET distribution is:

f(τ) ≈ λ0(
τ

∆0

+ 1)
−(1+λ0∆0)

e
−λ∞τ , (5)

which exhibits constant rate λ0 at short scale (τ < ∆0), power
law distribution with exponent 1 +λ0∆0 at middle scale, and
the exponential mode at long scale (τ in the vicinity of λ−1

∞ )
. �



Justification of the model:
Multiscale IET distribution. The multiscale pattern

of IET distribution also holds in other parameter settings:
i) The range of short scale is controlled by ∆0, as shown in

Fig. 1b. When ∆0 increases, the range of short-scale expands
to right, and vice verse. When ∆0 → 0, the short-scale of
IET distribution disappears.

ii) The slope of the middle range is primarily controlled
by θ. When α = m = 1, the the situation when θ = 1 is

shown in lemma 3.2; when θ 6= 1, the e
−

∫ t
tn
λ0( s−tn

∆0
+1)−θds

is a stretched exponential distribution which exhibits fat-tail
IET distribution at middle scale. Thus, the larger θ is, the
sharper slope is.

Short-term correlation of IETs. Both correlation-
effect and multiscale-effect have impact on the short-term
correlation of IETs:

i) When α = m = 1, the LSmP denotes a renew process,
indicating no correlation between IETs. When m > 1, the
correlation appears. When m = ∞, Φ0(t|Ht) behaves like
Hawkes process with power-law-like kernel, and the supercrit-
ical state (

∫
Φ0(s|Ht)ds > 1) generates exponential growth,

implying the strongest correlation.
ii) The larger value of θ, the quicker temporal fizzling of

previous influence, and thus the weaker IETs’ correlation.
Bursts. The bursts are governed by the multiscale effect

and the correlation-effect:
i) As shown in Fig. 1b, ∆0 is critical point between small

IET (quick activities) in short-scale and fat-tailed IET in
middle-scale. Thus, the larger ∆0 is, the more bursty n(t) is.
The smaller θ, the more bursty of n(t). Because the smaller
θ, the fatter IET distributions at middle-scale, and thus more
IETs with relatively small values appear.

ii) A longer memory length induces the stronger short-
term IETs’ correlation due to the superposition influence of
previous events, leading to a sudden large rate/burst.

3.3 Parameter estimation

We learn the parameters of LSmP by maximizing log-likelihood
function. The log-likelihood function of observing a point
process {t1, ..., tn−1, tn} on time period [0, T ) is given by:

logL(t1, ..., tn) = −
∫ T

0

λ(t|Ht)dt+

∫ T

0

log λ(t|Ht)dN(t)

= −λ∞∆∞[(
tn

∆∞
+ 1)

α − 1]

−
n∑
i=1

λ0∆0

1− θ
[(
ti+m − ti

∆0

+ 1)
1−θ − 1]

+

n∑
i=1

log[λ∞α(
ti

∆∞
+ 1)

α−1
+ λ0A(i)]

(6)

where A(i) =
∑
ti−m≤tj<ti(

ti−tj
∆0

+ 1)−θ for i ≥ 2 , and

ti denotes the time of occurrence of the ith event, and
A(1) = 0. For convenience, we assume T = tn. Maxi-
mizing Eq. 6 regarding {λ∞, α,∆∞, λ0, θ,∆0,m}, subject
to {α,∆∞, θ,∆0, λ∞, λ0 ≥ 0;m ∈ N} leads to estimated
modeling parameters.

A good advantage of LSmP is that all the parameters have
closed-form gradients. The gradients for the long-memory

part are:

∂ logL

∂λ∞
= −∆∞[(

tn

∆∞
+ 1)

α − 1] +
n∑
i=1

α(
ti

∆∞ + 1)α−1

D(i)
(7)

∂ logL

∂α
=− λ∞∆∞(

tn

∆∞
+ 1)

α
ln(

tn

∆∞
+ 1)

+
n∑
i=1

λ∞(
ti

∆∞ + 1)α−1[α ln(
ti

∆∞ + 1) + 1]

D(i)

(8)

∂ logL

∂∆∞
=− λ∞[(

ti

∆∞
+ 1)

α − 1] + λ∞α
tn

∆∞
(
tn

∆∞
+ 1)

α−1

−
n∑
i=1

λ∞α(α− 1)
ti

∆2
∞

(
ti

∆∞ + 1)α−2

D(i)

(9)

where D(i) = λ∞α( ti
∆∞

+ 1)α−1 + λ0A(i). When θ 6= 1, the

gradients for the short-memory part are:

∂ logL

∂λ0

= −
∆

1− θ

n∑
i=1

[(
ti+m − ti

∆
+ 1)

1−θ − 1] +
n∑
i=1

A(i)

D(i)
(10)

∂ logL

∂∆0

=−
λ0

1− θ

n∑
i=1

[(
ti+m − ti

∆0

+ 1)
−θ

(θ
tt+m − ti

∆0

+ 1)− 1]

+

n∑
i=1

λ0B(i)

D(i)

(11)

∂ logL

∂θ
=−

λ0∆0

(1− θ)2

n∑
i=1

[(
ti+m − ti

∆0

+ 1)
1−θ − 1

− (1− θ)(
ti+m − ti

∆0

+ 1)
1−θ

ln(
ti+m − ti

∆0

+ 1)]

−
n∑
i=1

λ0C(i)

D(i)

(12)

where B(i) =
∑
ti−m≤tj<ti

θ(ti−tj)
∆2

0
(
ti−tj

∆0
+ 1)−θ−1 for i ≥ 2

andB(1) = 0, and C(i) =
∑
ti−m≤tj<ti(

ti−tj
∆0

+1)−θ ln(
ti−tj

∆0
+

1) for i ≥ 2 and C(1) = 0. The counterparts when θ = 1
can easily get, and we leave it for brevity. In numerical
calculation when θ = 1, we could add a very small error, say
10−8, to θ to reuse above formulas.

For a specific m, we solve the constrained optimization
problem by the trust-region-reflective algorithm [6], and then
choose the best results by enumerating m according to the
maximum likelihood principle [14]. For reproducibility, we
open our code, see Section 5.

3.4 Simulation of LSmP dynamics

We design the simulation method of LSmP by the inverse
method [8] (P260, Algorithm 7.4.III.) due to unbounded
nature of λ(t|Ht) when α > 1. The basic operation of the

inverse method is solving the equation log u+
∫ t
tn
λ(s|Ht)ds =

0 for t where u is generated from uniform distribution U(0, 1).
When α ≤ 1, the adapting Ogata’s thining algorithm [19]
can be applied for speeding up. For brevity, we only present
the inverse method here. We open our simulation code, see
Section 5.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of LSmP on the
real data at large scale. We introduce the dataset in Sec.4.1.
In Sec.4.2, we validate the accuracy of matching real data
in three aspects. What’s more, our LSmP can be applied in

zangc
高亮



Algorithm 1: Simulation algorithm for the Long-Short-
Memory Process (LSmP)

Input : Hazard function of
LSmPλ(t|Ht) = Φ∞(t|λ∞,∆∞, α) + Φ0(t|λ0,∆0, θ),
total event number N

Output : {t1, ..., tN}
1 Set current number of events n = 1, and current time t = 0;

2 while n ≤ N do
3 Sample u ∼ Uniform([0, 1]) ;

4 Solve log u+
∫ x
t
λ(s|Ht)ds = 0 for x by Algorithm 2.;

5 t = t+ x;

6 tn = t;

7 n = n+ 1 ;

8 end

Algorithm 2: Newton’s iterative method

Input : Equation F (x) = log u+
∫ x
tn
λ(s|Ht)ds.

Output : x
1 Set ε = 10−8, x = tn − tn−1;

2 while |F (x)| ≤ ε do

3 x = x− F (x)

F ′(x)
;

4 end

many data mining tasks. In Sec.4.2.3, by analyzing the mod-
eling parameters, we find statistical regularities underlying
the empirical growth dynamics. In Sec.4.4, we cluster typical
growth patterns of human connectivity and detect outliers.

4.1 Datasets

Our experiments are conducted on WeChat, which is the
largest online social network in China with more than 806
million monthly active users by June 30, 2016. We collected
the history data of WeChat consisting of complete records
of all the node and link growth from January 21, 2011 (the
release day of WeChat), to January 16, 2013 when the regis-
tered users reached 300 million. In total, there are 300 million
registered users and more than 4.75 billion friendships. The
records are (u, tu) and (u, v, tu,v) where u and v represent
the users’ ID, and tu, tu,v are the timestamps of the birth of
node and link respectively. In order to get enough friendships
to study connectivity dynamics for each individual, we select
the first 1 million users sorted by degree (with degree ≥ 143)
and random select 10% of this population for the following
experiments. All the WeChat data that we could access were
anonymized for strict privacy policy.

4.2 Accuracy

We validate the accuracy of our LSmP by answering if our
model can capture the empirical growth dynamics for each
individual. The experiments are conducted by validating the
accuracy of following three aspects: (i) the growth shape,
(ii) the multiscale IET distribution, and (iii) the IETs’ cor-
relation.

4.2.1 Baselines for human dynamics. We consider following
four representative human dynamic models for comparison:

1) Poisson process (PP) has a constant hazard function
λ(t|Ht) = λ, which generates linear growth.

2) Hawkes process with exponential kernel (HWK-E) has

hazard function λ(t|Ht) = µ+
∑
ti<t

αe−β(t−ti) [9].

3) Hawkes process with power law kernel (HWK-P) has a
fat-tailed kernel is used in HWK-P. The hazard function of
this model is λ(t|Ht) = µ+

∑
ti<t

α(t− ti)−β [13]. HWK-P

owns critical phenomena [7].
4) Self-feeding process (SFP) [1, 22] captures the Markov-

ian dependency of IETs. The hazard function of this model
is λ(t|Ht) = 1

µ/e+τi
.
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Figure 2: LSmP fits reality much better than competi-
tors in both settings. Median value of the Mean Av-
erage Error (MAE) for cumulative number of events
over time ni(t), i.e., MAEN (i), and the event time
epochs t, i.e., MAET (i) are shown in (a) and (b), re-
spectively.

4.2.2 Accuracy of growth curve shape. We evaluate the
shape accuracy between the empirical dynamics ni(t) =
|{tj < t|tj ∈ Ht = (t1, ..., tni)}| and the estimated dynamics

ˆni(t) = |{t̂j < t̂|t̂j ∈ Ĥt = (t̂1, ..., ˆtni)}| of each individual
i by considering the average mean error of the cumulative

count: MAEN (i) =
∑ni
j=1 |n(tj)− ˆn(tj)|

ni
, and the average mean

error of the event time epochs: MAET (i) =
∑ni
j=1 |tj−t̂j |

ni
. For

each individual, we compute MAEN (i) and MAET (i), and
Figure 2 plots the median of MAEs for the ni(t).

The proposed LSmP model fits the reality much better
than the baselines for both the metrics. In average, LSmP
captures the number of event n(t) at each event time epoch
ti with error 10.3. In contrast, the MAEN given by the PP,
HWK-E, HWK-P, SFP are 1.6, 1.8, 3.1, 4.9 times of the
LSmP’s, respectively. Similar results go with the error of the
event time ti: the MAET given by the PP, HWK-E, HWK-P,
SFP are 1.7, 1.8, 3.1, 18.7 times of the LSmP’s, respectively.
The worst results are given by the SFP due to the fact that
it may generate extremely overestimated IET. The HWK-P
gives the second largest error due to the fact that the Hawkes
process with power law kernel is easily in the supercritical
regime, which generates exponential growth. The PP and
the HWK-E give similar results because they generate linear
growth.



Table 2: KS-Test of models. Our LSmP model cap-
tures the multiscale IET distribution. Winner in
bold.

KS-Test (Sig. α = 5%)

τ LSmP PP HWK-E HWK-P SFP

Pass Rate 87.1% 7.8% 62.9% 37.0% 2.4%
Error Statistic 0.098 0.256 0.134 0.162 0.291

log(τ) LSmP PP HWK-E HWK-P SFP

Pass Rate 87.1% 7.8% 62.9% 37.0% 2.4%
Error Statistic 0.098 0.256 0.134 0.162 0.291

4.2.3 Accuracy of multiscale IET distribution. We then
demonstrate that the LSmP accurately captures the multi-
scale IET distribution of the growth dynamics. We compare
the IETs of each individual’s connectivity dynamics τi =
{τ1, ..., τni} and the generated counterpart τ̂i = {τ̂1, ..., τ̂ni}
by testing whether τi and τ̂i are from the same continuous
distribution. The two-sample Kolmogorov-Smirnov test (KS
-Test) is applied for this standard statistical test mission.
The fitting results of the model are shown by the indicator
of passing the test, and a statistic representing the extent of
difference between empirical data and the fitting results.

Table 2 presents the average pass rate and the error statis-
tic for LSmP and the baselines with the significance level
α = 5%. Our LSmP model outperforms all the baselines
significantly in both the metrics: 87.1% of the generated
dynamics by LSmP passes the KS-Test with average error
0.098. The pass rate of LSmP increases to 94.1% if we loose
the significance level to 1%. We also conduct the hypothesis
test on the logarithmically transformed IET log(τ). We get
same results for the log(τ) as the τ . All the baselines fail to
capture the multiscale IET distribution: i) the PP, which
only generates exponential distribution in the long-scale, fails
the short-scale and middle-scale; ii) the HWK-E exhibits a
mixture of two exponential distributions at short-scale and
long-scale, neglecting the fat-tail in middle-scale; iii) the
HWK-H misses the flat short-scale; iv) the SFP cannot gen-
erate flat short-scale and exhibits large bias in the middle
scale.

4.2.4 Accuracy of IETs’ correlation. We further show that
our LSmP captures the correlation between the IETs by com-
paring the joint distribution of consecutive IETs p(τi,j , τi,j+1)
from empirical data, and the generated results p(τ̂i,j , τ̂i,j+1).
We apply the two-dimensional version of the Kolmogorov-
Smirnov test (2D-KS-Test) [21] to test whether p(τi,j , τi,j+1)
and p(τ̂i,j , τ̂i,j+1) are same. We set the significance level to
5%. Table 3 presents the average pass rate and the error
statistic for LSmP and other baselines. Again, LSmP beats
all the baselines significantly in both metrics. We further ex-
amine to what extent the goodness-of-fit by the 2D-KS-Test
are dominated by the marginal distributions. By shuffling
the IET of the generated growth dynamics, we test the shuf-
fled ps(τ̂i,j′ , τ̂i,j′+1) against the empirical p(τ̂i,j , τ̂i,j+1). We
find LSmP gets the largest pass rate 77.5% (as shown in

Table 3: 2D-KS-Test of models. Our LSmP model
captures the IETs’ correlation. Winner in bold.

2D-KS-Test (Sig. α = 5%)

τ LSmP PP HWK-E HWK-P SFP

Pass Rate 85.5% 7.9% 61.1% 34.1% 2.0%
Error Statistic 0.145 0.329 0.189 0.220 0.371

Shuffled τ LSmP PP HWK-E HWK-P SFP

Pass Rate 77.5% 7.9% 57.2% 27.3% 1.9%
Error Statistic 0.159 0.329 0.194 0.231 0.384

log(τ) LSmP PP HWK-E HWK-P SFP

Pass Rate 85.4% 6.7% 62.0% 34.0% 2.6%
Error Statistic 0.145 0.329 0.189 0.220 0.371

the second panel of Table 3) due to the nice characteriza-
tion of the marginal distribution. What’s more, LSmP also
has the maximum additional increase 8% (=85.5%− 77.5%)
due to the characterization of the correlation between IET-
s. Same conclusions can be drawn from the logarithmically
transformed IET log(τ).

In all, only our LSmP correctly approximates the empirical
growth dynamics of individuals’ connectivity with respect to
the shape of curves, the multiscale IET distribution and the
IETs’ correlation.

4.3 Discovering statistical regularity by
parameter analysis

One good advantage of LSmP is that all the modeling pa-
rameters have clear physical meanings. In this section, we
find statistical regularities underlying the empirical growth
patterns through parameter analysis. To our best knowledge,
this is the first empirical study of the profound exponents, α
and θ, which govern human dynamics.

Figure 3 plots the distributions of the six parameters
of LSmP. We fit the distributions of each parameter by
Levenberg-Marquardt algorithm [17] and report their coeffi-
cients’ values with confidence bounds 95%. We get following
findings for the human dynamics of adding friends in the
long-term:

Rich complexities and heterogeneities in power law
growth. Figure 3a plots the distribution of the exponent
α of power law growth, we find that it’s a mixture of three
distributions as follows, taking on complexity:

i) A skewed normal distribution (µ = 0.70, σ = 0.57,
s = 2.6) near 1 where µ is the mean location, the σ is the
standard deviation and s is the skewness. The location value
indicates in average users show decelerating power law growth
with exponent α ∼ t0.7. The positive skewness value shows
that there exist a large number of linear growth(α = 1) and
accelerating power law growth (α > 1). A relatively large
variance implies the heterogeneity of human growth patterns
in the long-term. Besides, these findings at microscopic
level are consistent with our previous finding [25] that at
macroscopic level nodes grow over time n(t) ∼ t2.15, links
grow over time e(t) ∼ t3 and thus average connectivity grows
e(t)
n(t)
∼ t0.85.
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Figure 3: Parameter distributions. Short-term parameters: (a) α, (b) λ∞, (c) ∆∞, and long-term parameters:
(d) θ, (e) λ0, (f) ∆0. The colored bars represent the sub-clusters, and the same colors denotes same population.
The overall distribution is marked by black stairs. The fitting curves for each cluster are denoted by colored
lines.

ii) A normal distribution (µ = 1.9, σ = 0.077) near 2
implies that there exist some users with large power law
exponents with upper-bound near ≈ 2. The reason of this
bound might origin from the fact that the maximum number
of links to be linked in a social network is proportional to
the square of the number of nodes so far.

iii) An exponential distribution (α ∝ e−39.4x) near 0, in-
dicates that the growth dynamics in this regime decelerate
significantly in the long-term. The finite size effect of friend-
ships, possibly derived from the limited human cognition may
account for this deceleration.

Log-normal distribution governing the multiscale
long-term rate and human adds a friend per week.
Figure 3b plots the distribution of growth rate λ∞, and
we find a mixture of four log-norm distributions spanning
more than 8 order of magnitude, ranging from 1/second,
1/hour, 1/week to 1/year. The majority of human growth
lie in the mode 1, with best log-norm fitting (for log(λ∞),
µ = −5.80, σ = 1.11), indicating that humans add friends
in a cycle of 7.3 days in average. The small λ∞ in mode
2 (µ = −3.65, σ = 1.04) implies a long period of time
without events at initial lifetime, while large λ∞ in mode 3
(µ = −0.97, σ = 0.37) and mode 4 (µ = −0.97, σ = 0.37)
imply a burst of events at the initial lifetime. We discuss the
correlation between λ∞ and α and their implications in the
next subsection.

Typical time scale in the long-term is 4 days. Fig-
ure 3c plots the distribution of ∆∞, best fitted by a skewed
log-norm distribution (µ = 5.55, σ = 0.17, s = −12.00),
implying that the typical time scale of human dynamics
of adding friends is near 4 days (= 10µ s). For example,
when you start a new job on Monday and establish a set

of connections to your workmates until Friday (four days
later!).

The findings for the human dynamics in the short-term
are as follows:

Gaussian mixture of fizzling exponent. Figure 3d
plots the the fizzling exponent θ, which follows a Gaussian
mixture distribution with two modes: mode 1 (µ = 0.79,
σ = 0.080) and mode 2 (µ = 1.02, σ = 0.32). The case
when θ = 1 in mode 2 is in line with the prediction of the
priority queue model [23], indicating a power law decay (See
Lemma 3.2). But we find rather than the power law decay
in the critical state when θ = 1, θ 6= 1 is more general,
indicating a stretched exponential decay. Especially we find
the mode 1 with mean value 0.79, indicating a fatter tail of
the IET distribution.

Bimodal short-term rate. Figure 3e plots the distri-
bution of the short-term growth rate λ0, which follows a
bimodal distribution, where the skewed log-normal distribu-
tion (µ = 2.68, σ = 0.88, s = −5.63) best fits the mode 1,
and the log-normal distribution (µ = −2.16, σ = 0.56) best
explains the mode 2. The separated two modes show clear
two clusters for human dynamics in the short IET scale. We
discuss it in next section.

Bimodal critical time in the short-term, and adding
friends as soon as 6 seconds. Figure 3f plots the distri-
bution of short-term scale ∆0, which also follows a bimodal
distribution. The mode 2 is best fitted by log-normal dis-
tribution (µ = 0.81,σ = 0.51), with mean value 6 seconds,
indicating the critical time between the quick actions and
the fat-tailed patterns of the IET distribution. Indeed, the
WeChat offers multiple methods for adding friends as soon as
possible, e.g.,“shake it”. By shaking the mobile phone, user



can add strangers who is shaking at the same, and thus a ran-
dom link is built. The mode 1 follows log-normal distribution
(µ = −6.03,σ = 1.3) with mean value 10−5.77 (∼ 0) seconds,
indicating that the IET distribution of this users consisting
of only middle-scale and long-scale (Fig. 1d). In addition,
we find strong correlations between these three short-term
parameters: the population in ∆0-mode1 correspond to the
large λ0 value in λ0-mode11 and the 0.79 fizzling exponent
in θ-mode1.

4.4 Clustering growth dynamics and
detecting outliers

The LSmP’s ability of pattern finding is further examined in
the joint distribution of modeling parameters.

Figure 4: Growth modes in the long-term. (a) The
joint distribution of the long-term rate λ∞ and the
power law growth exponent α, on a log-linear scale.
The corresponding marginal distributions are shown
in Figs. 3. Instances of growth are shown in (b-g).

Due to the prevailing of the (skewed/log) normal distribu-
tion in our data, we apply the Gaussian mixture model to
the long-term parameter space (α, λ∞,∆∞) and short-term
parameter space (θ, λ0,∆0) respectively, and find clusters, as
shown in Fig. 3. Bars with different color represent different
clusters, while the same color in different marginal distribu-
tions represent same cluster. We further examine the cluster
patterns in the high-order parameter space [26], as shown in
the joint distributions in Fig. 4 and Fig. 5. Different modes
in the long-term and short-term are found by these joint
distributions.

Long-term growth modes. Figure 4 plots the growth
dynamics projected into the long-term (λ∞, α)-space, we find

(a) (b)

Figure 5: Growth modes in the short-term. (a) The
joint distribution of the short-term fizzling the expo-
nent θ and the short-term time scale δ0, on a linear-
log scale. The inset plots two representative IET
distribuions in cluster 1 and cluster 2, respectively.
(b) The joint distribution of θ and α on a linear-linear
plot.

three major growth modes of human connectivity dynamics
as our LSmP predicts:

Linear growth is in the vicinity of the α = 1 region, con-
sisting of the population near the mode of Cluster1. The
α = 1 features linear growth as shown in Fig. 4c.

Accelerating power law growth is in the α > 1 regime,
containing the top half part of the Cluster1, and the quadratic
growth dynamics in Cluster2. The quadratic growth (α = 2)
is a special case of accelerating power law growth, as shown
in Fig. 4b.

Decelerating power law growth is in the regime with α < 1,
consisting of the bottom half of the Cluster1 (one instance
in Fig. 4d) and Cluster3a and 3b. Figures 4e&f plot two
instances in Cluster3a and Cluster3b respectively. Along the
λ∞ axis, the Cluster3a exhibits a large delay at initial time
and then decelerating power law growth followed at the small
λ∞ value region, while the Cluster3b shows initial burst then
followed by decelerating power law growth growth at the
large λ∞ value region.

Short-term growth modes. Figure 5a plots the joint
distribution of the short-term (θ, ∆0)-space. We find the two
modes of the short-term dynamics are separated by whether
they show short-scale in IET distributions, as shown in the
inset of fig. 5a.

Correlation between long-term and short-term. We
further examine the correlation between the long-term pa-
rameters and the short-term parameters. The Figure 5b
plots the joint distribution of the short-term fizzling expo-
nent θ and long-term power law growth exponent α. We find
the majority of dynamics (in Cluster1) show large variance
with respect to θ, implying the relatively small correlations
between the long-term memory and short-term memory.

Outlier detection. In addition, we showcase the outlier
detection in the parameter space. By examining the joint
profile for the λ∞ and α, we also find outliers. Figure 4g
plots one growth instance in the outlier point cloud, featuring
long time vacation and large burst. A couple of actions
for this user within first 1.3 year, he/she then added 50
friends in few minutes. We find the baselines can not capture
these phenomena at all, but our LSmP even captures this



outlier to some extent. Furthermore, the parsimonious feature
dimension and the clear physical meanings facilitate the
design of more elaborated outlier detection method for future
work.

5 CONCLUSIONS

In this paper, we studied the growth dynamics of individual’s
social connectivity in WeChat. We find various power law
growth in the long-term and bursts in the short-term. We
find the average-effect to account for power law growth and
multiscale-effect and correlation-effect to account for bursts.
Based fundamentally on these ingredients, we propose LSmP
to capture the individual’s social connectivity dynamics. Our
LSmP gives a unified but parsimonious model which can accu-
rately match and comprehensively explain growth dynamics
of microscopic social connectivity. The main contributions
are:

• Novel findings: We analyze the social connectiv-
ity dynamics in real social network at microscopic
level and discover power law growth in the long-
term and bursts in the short-term. We find three
ingredients, i.e., average-effect, multiscale-effect and
correlation-effect accounting for the power law and
bursty growth.

• Novel LSmP model: We propose a stochastic
model to capture above findings. LSmP is parsi-
monious and all the parameters have clear physical
meanings.

• Accuracy: We present experiments on real social
networks. Our LSmP model matches the real growth
patterns accurately.

• Usefulness: Our LSmP provides insightful under-
standings on human dynamics, and implies applica-
tions in prediction, clustering, pattern discovery, and
outlier detection, etc.

Limitation and future work. The sociological theories
underlying the observed behaviors need further examination.
Due to the ubiquity of growth phenomena, it’s also interesting
to see if our model can be applied to the growth dynamics
of other systems, ranging from the connectome of C.elegans
[18] to the growth of a company.

Reproducibility. We open-source our code of the LSmP
at https://github.com/calvin-zcx/LSMP.
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Goh, Imre Kondor, and Albert-László Barabási. 2006. Modeling
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