
Quantifying Structural Patterns of Information Cascades

Chengxi Zang1, Peng Cui1, Chaoming Song2, Christos Faloutsos3 and Wenwu Zhu1

1Department of Computer Science, Tsinghua University, Beijing, China
2 Department of Physics, University of Miami

3 Computer Science Department, Carnegie Mellon University
zangcx13@mails.tsinghua.edu.cn, chaomingsong@gmail.com, christos@cs.cmu.edu,

{cuip,wwzhu}@tsinghua.edu.cn

ABSTRACT
Information cascades are ubiquitous in both physical society and
online social media, taking on large variations in structures, dy-
namics and semantics. Although there has been much progress
on understanding the dynamics and semantics of information cas-
cades, little is known about their structural patterns. In this paper,
we explore a large-scale dataset including 432 million information
cascades with explicit records of spreading traces. We find that
the structural complexity of information cascades is far beyond the
previous conjectures. We first propose seven-dimensional metric-
s, which reflect size and spreading orientation aspects, to quantify
the structural characteristics of millions of information cascades.
Further, we analyze the correlations of these metrics, finding some
brand new structure patterns of information cascades, potentially
providing insights into intrinsic mechanisms governing information
spreading in nature and new models to forecast as well as to impose
good control over information cascades in real applications.
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1. INTRODUCTION
Information cascades are ubiquitous phenomena in self-organized

social systems, enabling the local individuals to have global sens-
es, and thus playing important roles in technology dissemination as
well as epidemic diffusion [1]. Due to the importance and complex-
ity of this phenomenon, the information cascades have attracted
considerable attention in recent years, ranging from the cascades
of chain-letters [2] in physical society to the cascades of reshar-
ing in on-line social media platforms such as Facebook and Weibo
[5]. Although the dynamics [6, 7] and semantics [3] of information
cascades are well explored, a paucity of works examine the struc-
tural patterns of information cascades [4]. It remains an interesting
problem to see how to quantify the structural patterns of informa-
tion cascades, and how they look like in the metric space. Without
an understanding of the structure patterns of cascades, modeling or
forecasting the spreading process remains a challenge.
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One of the major reasons why this problem is seldom studied is
the lack of data covering explicit and full traces of information cas-
cades. In this paper, we collect 432 million information cascades
in Tencent Weibo (t.qq.com), which is one of the largest microblog
systems in China. This dataset includes the full scale information
cascades generated during a 7-day period, and for each microblog
we have the explicit records of its spreading traces.

Through extensive observational study over the dataset, we find
that real information cascades exhibit rich structures with large
complexity. In order to quantify the complex structures, we pro-
pose seven-dimensional structural metrics to reflect the size and
orientation aspects of information cascades. We then study the cor-
relations of these metrics, and obtain insightful understanding on
the structural patterns of cascades. For instance, we find that large
cascades are either deep or wide (Fig. 1c), and the probability of
generating large cascades with both large width and depth is quite s-
mall (Fig. 1d). We also find that besides the common branching-out
cascades, there still exists converging-in cascades (Fig. 2a), where
some users tend to retweet a microblog multiple times from his/her
different followees, and the branching-out and converging-in struc-
tures tend not to co-exist in one cascade (Fig. 2c).

2. CASCADE STRUCTURE PATTERNS
Cascade structure definition. The structure of a cascade C =

(V,E) is a directed graph in which each node u ∈ V represents a
user and each edge (u, v) ∈ E represents that user v retweets user
u’s post. The user uo ∈ V who initializes the post is the original
poster and all the other users are retweeters. An integer weight
w(u, v) ≥ 1 counts the number of edges from u to v, indicating
the fact that v retweets u w(u, v) times. A loop (u, u) is an edge
that connects u to itself, indicating that user u retweets himself.
Reciprocal edges ruv are a pair of edges (u, v) ∈ E and (v, u) ∈ E
where u 6= v, indicating the user u and v retweet each other.

Size. The size concept of a cascade is derived from the need of
comparing a bigger to a smaller, a longer to a shorter, and a wider to
a narrower. Thus, the size of a cascade (denoted as C) is measured
by following three metrics: i ) Mass N of a cascade refers to the
amount of nodes in it, indicating that a cascade with more users is
larger than the one with fewer users. ii ) Length L of a cascade is the
largest number of edges from the uo to any other nodes through the
spreading paths, indicating that a cascade with larger length value
is longer than the one with smaller length value. iii ) Breadth B
of a cascade is the largest amount of nodes in it at the same depth,
indicating that a cascade with larger width value is wider than the
one with smaller width value.

Size distribution. Figure 1a plots the distributions of the three
size metrics for the observed cascade. We observe fat-tailed nature
of all the size metrics, implying that there exist very large cascades
with respect to each size metric. For instance, in our dataset, the
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Figure 1: The size metrics for the empirical cascades.

biggest cascade which is also the widest cascade has mass value
1, 414, 815 and breadth value 1, 408, 024, and the longest cascade
owes the length value 57. However, the average mass, breadth and
length values are 5, 4 and 1 respectively.

Size correlation. Figures 1b-d plot the joint density profiles for
the size metrics. We find strong positive correlation between mass
and breadth as shown in Fig. 1b. Indeed, the correlation coefficient
between the logarithmically transformed mass and breadth values
is a strikingly high 0.99, indicating that the breadth accounts for
a large proportion of mass. Figure 1c plots the joint distribution
of length and mass, and we observe the biggest cascades are con-
strained to a relative small length, while the longest cascades are
with moderate mass values. Figure 1d plots the joint distribution
of length and breadth. We observe the majority of the cascades are
wide and shallow, and there exist narrow and deep cascades. In
contrast, it is difficult to find the very wide and deep cascades, or
the very narrow and deep cascades.

Orientation. The orientation of a cascade measures to what
extent that edges are directionally intertwined within the it. The
orientation is characterized by following four metrics: i ) Branch
coefficient measures to what extent the edges in C spreading out to
different nodes, characterized by the coefficient of variation (the ra-
tio of the standard deviation to the mean) of out-degree distribution
p(kout) of C, where kout(u) =

∑
v 1{(u, v) ∈ E} is the out-

degree of node u and 1 is the indicator function. A large branching
coefficient value of C means the edges in C spread out from a cou-
ple of source nodes to a large amount of destination nodes, imply-
ing the orientation of spreading edges are fully random rather than
spreading along a preferred direction. ii ) Converge coefficient mea-
sures to what extent the edges in cascade C converging into one n-
ode, characterized by the coefficient of variance of in-degree distri-
bution p(kin) of C, where kin(v) =

∑
u 1{(u, v) ∈ E & u 6= v}

is the in-degree of node v. A cascade with large converging co-
efficient value indicates a large proportion of edges pointing to a
couple of nodes, implying the information flows tend to converge
into few users. iii ) Reverse ratio measures to what extent the edges
in cascade C pointing to the reverse direction, characterized by
the ratio of the number of reciprocal edges to the total number of
edges, i.e., |{(u,v)|(u,v)∈E & (v,u)∈E & u6=v}|

|E| . iv ) Self-loop ratio
measures to what extent the edges in C starting and pointing to
the same direction, characterized by the ratio of the number of n-
odes which have self-loop edge to the total number of nodes, i.e.,
|{u|(u,u)∈E}|

|V | .
Non-branching orientations. Existing studies of cascade focus

mainly on the branching-out orientation, but we find other three
orientations are also ubiquitous. Specifically, cascades contain-
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Figure 2: The orientation metrics for the empirical cascades.

ing at least one of the converge, reverse or self-loop orientations,
shown in Fig. 2a, account for 20.0% of the total population. In
addition, cascades usually show a combination of different spread-
ing orientations. The Venn diagram in Fig. 2a shows the number
of cascades with different orientation types and their logical rela-
tionships. In total, 9.2% of the total cascades have more than two
orientation types, as shown in the overlapping region of Fig. 2. The
branch coefficient distribution shows a bimodal distribution where
two modes are near 0 and 2 respectively, implying that information
flow in cascades tend to spread along one direction, or a moderate
number of directions. In addition, very large values of branch coef-
ficient do exist. In contrast, the distributions of converge coefficien-
t, reverse ratio and self-loop ratio all peak near 0, a uniform-like
distribution at a moderate value range, and followed by a fat-tail
range at the large values, implying the prevalence of non-branching
orientations and the existence of extreme cases (e.g. each node has
a self-loop edge, or each edge has its reverse counterpart).

Orientation correlation. Further, we examine to what extent
these spreading orientations can coexist. The branch orientation
and converge orientation show non-coexistence relationship like t-
wo polarities. Figure 2d plots the heat map of branch coeff. vs.
converge coeff. for each cascade. We find that large converge co-
eff. values only exist with small branch coeff. values, and vice
versa.
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