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On Power Law Growth of Social Networks
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Abstract—What is the growth dynamics of social networks, like Facebook or WeChat? Does it truly exhibit exponential early-growth,
as predicted by the celebrated models, like the Bass model? How about the dynamics of links, for which there are few published
models? For the first time, we examine the growth of WeChat which is the largest online social network in China, together with several
other real social networks. We observe Power-Law growth dynamics for both nodes and links, a fact that breaks the textbook models
featuring Sigmoid curves. We propose NETTIDE, along with differential equations for the growth of nodes and links. Our model fits the
growth dynamics of real social networks well; it encompasses many traditional growth dynamics as special cases; while remaining
parsimonious in parameters. The NETTIDE for link growth is the first one of its kind, accurately fitting real data, and capturing
densification phenomenon. We further formulate two stochastic generators, which interpret the growth of nodes and links through
survival analysis and micro-level interactions within a social network respectively. The proposed generators reproduce realistic growth
dynamics of social networks. When applied on the WeChat data, our NETTIDE forecasted ≥ 730 days ahead with 3% error.

Index Terms—Social Network, Social Dynamics, Growth Dynamics, Power-Law Growth, Link Growth, Stretched-Exponential Growth.

F

1 INTRODUCTION

G ROWTH dynamics of social systems, ranging from social
networks [43], [44], social groups [46] to information cas-

cades [41], [45], occupies a central place in understanding social
dynamic phenomena. However, the lack of data which documented
the evolution of large social systems in real world prohibits us
from understanding intrinsic mechanisms governing their growth
dynamics. Thus, it’s difficult to answer common questions like:
How many members will Twitter have next month? How many
friendship links will WeChat1 (or Facebook, or Google-plus) have
next year? The count of members of a network (or belief, or
religion, or epidemic) is of vital importance (growth of social
products, provisioning, social implications of policy changes, etc)
and has been studied extensively (see section 2). The count of
links has attracted less interest, although it is also important (well
connected nodes in, say, FaceBook, are less inclined to churn;
well connected neurons in a brain possibly indicate resistance to
Alzheimer’s disease, etc).

Researchers from multiple disciplines have studied network
growth phenomenon for decades [7], [20], [21], [24], [26], [34],
and have achieved significant advancement towards understanding
the generation of scale-free networks, the densification of network
links, the shrinking diameters and so on. Network growth models
include the celebrated Barabási-Albert model and its variants [7],
[8], [10] - they all assume uniform growth of nodes. The Bass
model [29] and the Susceptible-Infected (SI) model [3], produce
Sigmoid growth curve with exponential growth at early stage.
None of them studies the growth of links over time.

In short, the focus of this paper is to answer these three
questions on growth dynamics of social networks:

1) How does the number of nodes n(t) grow over time?
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2) How does the number of links e(t) grow over time?
3) Can we generate realistic n(t) and e(t)?

The reader may think that, at least the first question, already
has an answer: Sigmoid growth (which is the solution to the
SI and the Bass model). However, reality disagrees, exhibiting
power-law growth, instead, as shown in Figures 1a-b. Specifically,
we examine the evolving processes of four real social networks,
including WeChat, arXiv [1], Enron [19] and Weibo [42], respec-
tively representing online social networks, co-authorship social
networks, enterprise social networks and information cascading
networks. Taking WeChat for instance, we study its detailed
evolution from zero to 300 million nodes and 4.75 billion links,
spanning two years. We find that although the growth curves of
the four social networks have different shapes, they all follow a
power-law like growth pattern. Specifically, we find the growth
dynamics of WeChat follows power-law growth with exponent
2.15 for nodes and 3.01 for links (Fig 1a), and the growth
dynamics of arXiv follows power-law like growth before hitting
the plateaus (Fig 1b). These observations go beyond our traditional
expectations of exponential or uniform growth dynamics of social
networks, or diffusion of innovations phenomena.

Since Sigmoid and related growth models are contradicted by
reality, we need a more realistic one. We shoot for a model to fulfill
the following characteristics which good models should have:
1) Parsimony: The model should have as few parameters as

necessary, and still generate power-law growth.
2) Generality: The model should be general, better to encompass

traditional growth models like Bass, SI and Log-Logistic
growth, etc., as special cases.

3) Link growth: The model should be able to capture the growth
dynamics of links.

4) Intuition: The model should easy to interpret.
5) Generator: The population dynamic model should correspond

to microscopic generators which produce realistic growth dy-
namics at microscopic level.
We propose a novel dynamic model, named NETTIDE, for

network growth. The NETTIDE model consists of two compo-
nents, NETTIDE-Node and NETTIDE-Link for nodes and links
respectively. As we show later, our NETTIDE achieves the afore-
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Fig. 1. Reality disobeys Sigmoid curves: We find power-law growth dynamics for WeChat (a), and arXiv (b) - nodes over time (squares 2), well
fitted by our proposed NETTIDE-Node (solid red line), but not by the SI or Bass model (dashed gray line). The link count over time (circles #) and
our fitting model (NETTIDE-Link - in solid blue). Notice that there is no competitor for link dynamics (SI or Bass is crossed out). All axes are in log
scale.

mentioned characteristics, and it matches the behavior of several,
disparate real social networks.

Our model can be applied for prediction, clustering, and outlier
detection [18] on growth dynamics. For example, we show that
NETTIDE is able to forecast the growth of WeChat almost 2 years
in the future (730 days), with ≈ 3% error, which is impressive
given the fact that social systems are complex and non-linear. As
points of reference, most forecasting works usually do just one
step look-ahead [27], [32], rather than trying to capture and then
predict the long-term dynamics of complex systems.

The intuition of NETTIDE let us formulate two stochastic
generators, i.e., NETTIDE-Survival and NETTIDE-Process, both
of which generate realistic stochastic dynamics of nodes and links.
The NETTIDE-Survival connects the NETTIDE with the survival
analysis framework by modeling the hazard rates of nodes and
links. The NETTIDE-Process interprets the NETTIDE as a col-
lective dynamics derived from micro-level stochastic interactions
within a network. Through extensive numerical simulations, both
stochastic versions generate realistic growth dynamics.

In summary, the contributions of this work and the advantages
of NETTIDE are as follows:
• Novel model NETTIDE: It is parsimonious, it generalizes

many growth models as special cases, it provides the first-
ever differential equation for link growth, and it is intuitive.

• Accuracy: NETTIDE fits the growth of several, diverse, real
networks accurately.

• Usefulness: NETTIDE gives excellent forecasting, down to
3% error, for almost 2 years ahead in the future.

• Generators: NETTIDE has two stochastic generators, i.e.,
NETTIDE-Survival and NETTIDE-Process, which generate
realistic stochastic growth dynamics of social networks.

Several of the datasets are public [1], [19]; our code is open-
sourced at github.com/calvin-zcx/NetTide

The outline of the paper is the typical one: we give the
survey (Section 2), the proposed method (Section 3), experiments
(Section 4), and conclusions (Section 5).

2 RELATED WORK

As the investigated problem is closely related to network evolu-
tion, growth models, and human dynamics, we mainly review the
related works in these three fields.

2.1 Evolving network

The pioneering studies in evolving network have revealed that the
growth process of a real network plays a vital role in shaping its
structure, like the power-law distribution of degree [7], shrinking
diameters [26], densification growth [26] and so on. However,
all these evolving network models assume that the dynamics of
the node growth process are uniform, like the Barabási-Albert
model (BA) model [7] and its variants [10]. Some other works
empirically exploit node growth dynamics as input, and do not
aim to find the patterns of node growth dynamics [9], [15], [17],
[22], [24], [26].

In literature, the growth dynamics of links are largely ignored.
A few works show the double preferential attachment or the
random attachment [2], [8], [14] of the internal links may make
the network more homogeneous, where the growth rate of links are
also assumed to be uniform. Recently, the effects of information
diffusion on link creation are studied in [4], [39], and [12]
proposed the multivariate Hawkes process model (Coevolve) to
capture the microscopic evolution of the linking and information
diffusion. However, it suffers from two issues: computation time
is prohibitive, being O(N2) where N represents the number of
events as mentioned in [12] ; being based on a Hawkes process, it
can NOT generate power-law growth with the observed exponents
(2.15, 3.01 in Fig 1). See discussion on Hawkes process, in section
2.2. Temporal and spatial correlations of the growth of social
networks are studied in [37], [48].

2.2 Growth models

The growth models [5] are discussed in a wide range of fields.
The most classical models on growth phenomenon are Susceptible
Infected (SI) model in epidemiology [3] and the Bass model [29]
on the diffusion of innovations. They generate S-shaped curve
with exponential growth at early stage for the growth of infected
nodes. They also provide intuitive explanation for the microscopic
infection process in a mean-field form. The exponential growth
induced by the constant infection rate is against the intuition of
the forgetting nature of human [6], [35], or the fizzling patterns
in the social networks [28]. Models like PhoenixR [13] tried to
introduce fizzling mechanism based on Susceptibel Infected Re-
covered (SIR) model [3]. The variances of SIR models are further
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TABLE 1
Capabilities of models. Only our model meets all specs.

Net Growth Growth phenomenon Our model

Capability BA FF Coevolve SI BASS CS SpikeM PhoenixR NetTide

Exponential growth X X X X X X X
Power-law growth with arbitrary exponent X
Differential equation for n(t) X X X X X X
Closed form n(t) X X X
Differential equation for e(t) X X
Microscopic Generators X X X X

developed in [36], [46], etc. However, the constant recovery rate
based on SIR can not slow the exponential growth down to the
power law growth. In all, all the above models cannot generate
power-law growth as we observed in the real social network data.

Recently, studies based on a kind of self-excited point process,
i.e. Hawkes processes (HP) [16], are introduced to capture the
growth and diffusion phenomena, which can be viewed as the
endogenous branching process (BP) with the exogenous immigra-
tion process [23], like Crane-Sornette (CS) model [11], SpikeM
[33]. The HP and its variants above can generate growth patterns
in three regimes: exponential growth in super-critical regime like
SpikeM, the power law growth with exponent < 1 for rate and
exponent < 2 for the cumulative count like CS model, and the
growth dying out quickly in sub-critical regime. Thus, all the
above models cannot generate power-law growth with arbitrary
exponent, like 2.15 we observed in WeChat social network. In
addition, none of previous models describe the growth dynamics
of links.

2.3 Human dynamics

The dynamics of human beings usually exhibit bursty behaviors
and fat-tailed interevent time (IET) distribution [6]. Power-law
distribution of IET are explained by priority queue model [38]
and modulated Poission model [30]. Recently, multiscale nature
of IET distribution [44], [47] have been found, including bimodal
distribution [40] at long-scale, and quick actions at short-scale
[47]. In all, fizzling temporal correlations of human behaviors are
ubiquitous, serving as one of the fundamental pillars of modeling
human behavior.

We summarize the relative advantages and failures of all above
models in Table 1. Only our NETTIDE model meets all the
advantages.

3 THE NETTIDE MODEL

3.1 Preliminaries

Traditional models, like the SI model or the Bass model, fail to
capture the power-law growth as shown in Figure 1. The SI model
is powerful, intuitive, and heavily used in numerous fields, either
as-is or with tiny modifications (like the Bass model, that adds a
noise term). However, it fails qualitatively to match the real-world
data of Figure 1a and 1b: it can only generate Sigmoid growth
over time, which lead to exponential early-growth - not power-law
growth.

Some reasonable attempts. Maybe we should vary the infectiv-
ity factor β, say, decaying over time (possibly because the novelty
wears off). An obvious way to show diminishing interest would be

TABLE 2
Symbols and Definitions

Symbols Definitions
N Number of the total population
n(t) Cumulative number of users by time t

dn(t)/dt Number of new users at time t
e(t) Cumulative number of links by time t

de(t)/dt Number of new links at time t
β Maximum growth rate of nodes
θ Temporal fizzling exponent
β′ Maximum linking rate
γ The scaling sparsity exponent
α The linear sparsity coefficient

exponential decay, i.e., β = β0∗exp(−ξt) where ξ is the half-life
of the radioactive-like decay of enthusiasm:
• Attempt 1: Radioactive decay:

dn(t)

dt
= β0 exp(−ξt)n(t) (N − n(t))

But above combination cann’t give the the power-law growth of
Figure 1.

The growth rate should depend on n(t) (the infected ones) as
well as on the susceptibles (N − n(t)) - but maybe not linearly?
Maybe not all susceptibles are available (e.g., some of them are
taking precautions against the infection) and/or not all infected
ones are actually active (e.g., some of them stay home). With less-
than-full participations, the equation becomes:
• Attempt 2: Partial participation(s):

We tried n(t)ζ , as well as (N−n(t))ψ , where ζ < 1, ψ < 1
try to model the less-than-full participation:

dn(t)

dt
= βn(t)ζ (N − n(t))ψ

This model has been widely used to capture the rate of a chemical
reaction, but the n(t)ζ and (N −n(t))ψ participatants are hard to
interpret to microscopic process. We will show that even without
any additional parameter our model fits power-law growth reality
quite well, and with additional one parameter it generates a wide
range of growth dynamics.

3.2 NETTIDE-Node

It turns out that full participations but with decay of the infec-
tivity/enthusiasm β capture the reality. A good model should be
intuitive - why would human interest decay?Decays, especially
scaling or power-law decays, have been observed in social inter-
actions (email response times etc, as we mentioned in the related
work section); as well as in the theory of random walks (the time



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2801844, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

0 50 100 150

Time

0

2000

4000

6000

8000

10000
n(

t)

3 = 0
3 = 1
3 = 1.5

(a) Cumsum in Linear-Linear

0 50 100 150

Time

0

200

400

600

800

dn
(t

)/
dt

(b) Rate in Linear-Linear

0 50 100 150

Time

100

102

104

n(
t)

(c) Cumsum in Log-Linear

0 50 100 150

Time

100

102

dn
(t

)/
dt

(d) Rate in Log-Linear

100 101 102

Time

100

102

104

n(
t)

(e) Cumsum in Log-Log

100 101 102

Time

100

101

102

103

dn
(t

)/
dt

(f) Rate in Log-Log

Fig. 2. NETTIDE-Node generates various growth dynamics. The cu-
mulative growth curves with different parameters on different scales
are shown in a, c, e, and corresponding rate curves are shown in
b, d, f. Sigmoid growth with exponential early growth (θ = 0, N =
104, β = 3 × 10−5), Log-Logistic growth with Power-Law early growth
(θ = 1, N = 104, β = 3 × 10−4), and Stretched-Logistic growth with
Stretched-Exponential early growth (θ = 1.5, N = 104, β = 4.5× 10−4)
are in blue dashed, red solid and yellow dotted line respectively.

between zero-crossings follows power law with exponent -1.5).
The power law decays are justifiable and intuitive to capture hu-
man decision-making process and collective relaxation dynamics
of social system.

It is the decay (or fizzling) mechanism leading to the power-
law growth, as shown in Fig. 1 and even more general case
stretched-exponential growth as shown in Fig. 2. Next, we give
the details and the proofs for the growth of nodes (NETTIDE-
Node model). Further in the next subsection, we work on the links
(NETTIDE-Link model). We summarize the symbols in table 2.

As we said, our NETTIDE-Node is governed by the differential
equation below:

dn(t)

dt
=
β

tθ
n(t)(N − n(t)) (1)

A social network with a large population n(t) has a propensity
to attract more nodes in the early stage. As the population who can
join the social network is limited, its growth will be constrained by
the decreasing number of potential nodes (N − n(t)), especially
at the saturation stage. This is a natural phenomenon and has been
observed in numerous disciplines, from the law of mass action in
chemistry to model the rate of a chemical reaction, to the spreading
of disease between the susceptible and the infected in epidemics.
The term β

tθ
(t > 0) is the fizzling infection/excitement rate since

the inception of the social network. That is, people have decaying
excitement to infect their friends to join a social network. It is
exactly the scaling exponent θ of the decay that leads to various
growth dynamics, including the power law growth as special case
(when there is no θ in Eq. 1, or equvalently θ = 1.). We refer to θ
as temporal fizzling exponent.

Next, we give the proofs that (a) our NETTIDE-Node model
can indeed lead to power law growth, (b) it includes the sigmoid
models (SI etc.) as special cases, and (c) it is capable of generating
a wide range of growth dynamics.

Lemma 1. When θ = 1, NETTIDE-Node follows Log-Logistic
growth dynamics, shown in equation (3), which approximates the
Power-Law growth shown in equation (6) with exponent βN
when n(t)� N .

Proof. When θ = 1, the NETTIDE-Node leads to

dn(t)

dt
=
β

t
n(t)(N − n(t)) (2)

As this is a separable differential equations, we can separate n(t)
term and t term to do the integral separately, and then get

n(t) = N
λ0 exp{

∫ t
t0
βN
µ dµ}

1 + λ0 exp{
∫ t
t0
βN
µ dµ}

= N
λ0( tt0 )βN

1 + λ0( tt0 )βN
(3)

where
λ0 =

n0

N − n0
(4)

and n0 is the total number of nodes in the initial time t0 of the
system. If n(t)� N ,

dn(t)

dt
≈ βN

t
n(t) (5)

leads to
n(t) = n0(

t

t0
)βN (6)

which shows power law growth with exponent βN .

The illustrations of the Log-Logistic growth, in red solid curve,
are shown in Fig. 2. A stretched S-shaped cumulative growth
curve is shown in Fig. 2a, compared with the sigmoid curve
in blue dashed line. The power-law growth (red solid curve)
exhibits sub-linear growth on log-linear scale shown in Fig. 2c,
and features linear growth on log-log scale shown in Fig. 2e,
indicating power-law rise and fall patterns for rate, before and after
the inflection point respectively, compared with Sigmoid curve in
blue (Figs. 2bd&f).

Lemma 2. When θ 6= 1, NETTIDE-Node follows growth pattern
as in equation (7). When n(t) � N , the growth at early times
behaves as equation (8).

We name the newfound growth dynamics in equation (7)
as Stretched-Logistic growth, and equation (8) as Stretched-
Exponential growth at early stage.

Proof. When θ 6= 1, the deviation procedures of equation (7) and
the initial growth (8) are similar with Proof in Lemma 1. We get:

n(t) = N
λ0 exp{

∫ t
t0
βN
µθ
dµ}

1 + λ0 exp{
∫ t
t0
βN
µθ
dµ}

= N
λ0 exp { βN1−θ (t1−θ − t1−θ0 )}

1 + λ0 exp { βN1−θ (t1−θ − t1−θ0 )}

(7)
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where λ0 is defined in Lemma 1. When n(t) � N , the initial
growth behaves as:

n(t) = n0 exp {
∫ t

t0

βN

µθ
dµ}

= n0 exp { βN
1− θ

(t1−θ − t1−θ0 )}
(8)

Now, we show the reason why we name it Stretched-Logistic. It is
worth recalling that if one random variable (r.v.) follows the Log-
Logistic distribution, then its logarithm follows a logistic distribu-
tion. Following the naming rule of the Log-Logistic distribution,
we then will show that if a r.v. T follows the Stretched-Logistic
distribution as

PT {T ≤ t} =
1

ZT

λ exp { βN1−θ (t1−θ − t1−θ0 )}
1 + λ exp { βN1−θ (t1−θ − t1−θ0 )}

(9)

, where ZT is the normalization factor and λ is a constant, then
its integral of fizzling effect X =

∫ T
t0
t−θdt = T 1−θ

1−θ −
t1−θ0

1−θ shall

follow the Logistic distribution. When θ < 1, for any x ≥ t1−θ0

θ−1 ,

PX{X ≤ x} = PT {
∫ T

t0

t−θdt ≤ x}

= PT {
T 1−θ

1− θ
− T 1−θ

0

1− θ
≤ x}

= PT {T ≤ [(x+
t1−θ0

1− θ
)(1− θ)]

1
1−θ }

=
1

ZT

λ exp{βNx}
1 + λ exp{βNx}

which shows that X follows Logistic distribution. When θ > 1,
for any x < t1−θ0

θ−1 , similar procedures as above can prove that X
follows Logistic distribution.

Lemma 3. When θ = 0, the NETTIDE-Node follows the Sigmoid
(or Logistic) growth dynamics, e.g. SI model, which is a special
case of Lemma (2). When n(t) � N , the Logistic growth
approximates to the Exponential growth as:

n(t) = n0 exp {βN(t− t0)} (10)

Proof. Replace the θ in Equation (7) and Equation (8) with 0.
Usually, the sigmoid function refers to a simplified case of logistic
function. Here, we use sigmoid and logistic interchangeably to
indicate S-shaped growth curve with exponential early growth.

Justification of the NETTIDE-Node:
• Temporal fizzling. Instead of capturing the temporal fizzling

effect of each individual by β
(t−ti)θ , where ti is the time of

i entering the system, we describe the fizzling growth of the
system by β

tθ
, where t is the time tick since the inception of

the whole system. Because the models capture the integral
of individual decay like dn(t)

dt = n(t0) +
∑
ti≤t µi

1
(t−ti)θ

can only generate exponential growth or power law growth
with exponent < 2 (as discussed in related work section).
It fails the reality (non-exponential growth, or power law
growth with arbitrary exponent like ≥ 2). In contrast, our
NETTIDE-Node fits the real data very well (in Experiment
section), and can encompass a large range of growth patterns:
power law early-growth with arbitrary exponent, the general
form stretched-exponential early-growth, and the exponential
early-growth as a special case (illustrated in Fig. 2).

3.3 NETTIDE-Link

The growth of social network can never be limited to nodes only.
No such differential equations to describe the growth dynamics
of links do exist before. Here, we introduce NETTIDE-Link to
characterize link growth dynamics. We assume that there exists un-
derlying organizational structure as the context of social network
formation and growth. For example, the formation and growth
of co-author social networks is constrained by the organizational
structures such as mentor-students and researcher-collaborators
structures. Hence, we need to take into account the characteristics
of the underlying organizational structure when modeling the
network growth. We define the underlying organizational structure
as graph G0, and the linking process is described as follow: for
each existing node i, i tries to link to his already existing neighbor
j in G0 . If there is a link already being there, then nothing
happens. If the link from i to j has not been established yet, i
tries to link j with rate β′ over the temporal fizzling term tθ . The
arrival of new nodes will bring a constant number of external links.
The NETTIDE-Link summarizes above linking process:

de(t)

dt
=
β′

tθ
n(t)(α(n(t)− 1)γ − e(t)

n(t)
) + 2

dn(t)

dt
(11)

Justification of the NETTIDE-Link:
• External links. 2dn(t)

dt captures the process where a newly-
arriving node bring two new links because we treat a link as
bidirectional link. The assumption is that we treat the first
link of each newly-arriving node as the external link. Also
we can elaborate on it, like treating the first m links of the
newly-arriving node being made at the same time.

• Internal links. Internal links are built between the already-
existing nodes, and thus give rise to the densification phe-
nomenon. For each existing node, he/she tries to link the
existing neighbors in G0 which have not being linked. Be-
cause of the organizational structure, less-than-full existing
nodes can be accessed and α(n(t)−1)γ captures the average
accessible existing neighbors. The term e(t)

n(t) is the average

number of already linked neighbors to be excluded. The β′

tθ

captures the fizzling linking rate.
• Densification. By empirical analysis in experiment section,

the link equation captures the densification power law by
the power-law sparsity exponent γ. The densification power
law between links and nodes are 1 + γ. For example, if we
model the G0 by the Kronecker graph model [25], we get
γ = logE/ logN .

3.4 Stochastic generators

Here we formulate two stochastic generators of NETTIDE, i.e.,
NETTIDE-Survival and NETTIDE-Process, which generate realis-
tic stochastic growth dynamics of social networks.

NETTIDE-Survival. We first show NETTIDE can be explained
in the survival analysis framework by defining hazard rates for
node and link growth respectively.
• Hazard rate of node growth. The instantaneous rate that an

individual adoption of, say, WeChat, will be made at time
epoch t given that this individual has yet been a registered
user is

λn(t) =
β

tθ
n(t). (12)
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Let F (t) be the fraction of individuals who have been a reg-
istered user by time t and f(t) denotes the derivative of F (t).
Then, λn(t) = f(t)

1−F (t) = β
tθ
n(t). Notice that F (t) = n(t)

N

and f(t) = dn(t)
N×dt , thus we connect the NETTIDE-Node

equation (1) and the hazard rate function (12) by

dn(t)

dt
= f(t)×N

= λn(t)× (1− F (t))×N

=
β

tθ
n(t)(N − n(t)).

(13)

Indeed, the hazard rate function in survival analysis frame-
work and the (Log/Fizzle-) Logistic framework are connected
by equation (13), based on the assumption that the potential
population N is constant.

• Hazard rate of link growth. The instantaneous rate of the
establishment of the external links are two times of the
instantaneous rate of nodes’ adoption rate. As for the internal
links, the instantaneous rate that an internal link will be made
at t given that this link has yet been built is

λe(t) =
β′

tθ
. (14)

Following similar analysis procedure, let Fe(t) be the frac-
tion of internal links which have been built by time t and
fe(t) is the derivative of Fe(t). Then,

λe(t) =
fe(t)

1− Fe(t)

=
de(t)

(αn(t)(n(t)− 1)γ − e(t))dt

=
β′

tθ
,

(15)

where αn(t)(n(t)−1)γ−e(t) is the total number of potential
links to be built by time t minus the links already built by
t. Thus we connect the NetTide-Link equation (11) and the
hazard rate function (14) by equation (15).

Given the input parameters (β, θ,N, β′, α, γ), the NETTIDE-
Survival generate stochastic growth dynamics n(t) and e(t) from
hazard rates as follows:
• Node growth. At each time epoch t, each ofN−n(t) survival

nodes is selected randomly to join with probability λn(t)h+
o(h) during the time interval (t, t + h) where h → 0. If
success, we increase n(t) by one and e(t) by two.

• Link growth. For the αn(t)(n(t)− 1)γ − e(t) survival links
by t, each of them is selected with probability λe(t)h+o(h)
during the time interval (t, t + h) where h → 0. If success,
we increase e(t) by two.

Extensions of NETTIDE-Survival. We could extend our
model to capture more realistic situations. For instances, haz-
ard function of node can have poisson term λ0 for λn(t) =
λ0 + β

tθ
n(t) to capture the intrinsic propensity for an individual

to make an adoption. The time-lag effect at the burning period
can be captured by λn(t) = β

(t+∆)θ
n(t) = β/∆θ

(1+t/∆)θ
n(t). By

introducing the sinusoidal function with specific configurations,
we can incorporate the periodicity into NETTIDE. For clarity, we
do not elaborate on these situations.

NETTIDE-Process. We further interpret the node and link
growth dynamics from the perspective of micro-level stochastic
interactions within a network. Under the mean-field assumption

that each individual is apportioned uniformly to the susceptible
neighbors, we can decompose the aggregate hazard rate into the
micro-level pairwise infection rate:

dn(t)

dt
= λn(t)× (N − n(t))

=
λn(t)

〈k〉
〈k〉N(1− F (t))

=
βN

〈k〉tθ
n(t)〈k〉(1− F (t)),

(16)

where 〈k〉(1 − F (t)) is the average susceptible neighbors to
be infected for each already infected user and 〈k〉 is the av-
erage degree. Hence, for each infected user, he/she tries to
induce each of his/her susceptible neighbors with probability
pn(t) =

∫ t+h
t

βN
〈k〉tθ dt = βN

〈k〉tθ ∗h+o(h) during the time interval
(t, t + h) when h → 0. As for the NETTIDE-Link, under the
uniform mixing assumption that γ = 1 and α is the linear sparsity
of a random graph, we decompose the aggregate hazard rate into
the micro-level pairwise link building rate:

de(t)

dt
= λe(t)× (αn(t)(n(t)− 1)− e(t))

=
β′

tθ
n(t)(α(n(t)− 1)− e(t)

n(t)
)

(17)

Hence, for each infected user, he/she tries to build link with each
of his/her already infected neighbors with probability pe(t) =∫ t+h
t

β′

tθ
dt = β′

tθ
∗ h + o(h) during the time interval (t, t + h)

when h→ 0.
Although closed-from relationship between macro-level haz-

ard rate and network-based micro-interaction are analyzed in
random graph, the NETTIDE-Process can be applied to arbitrary
networks. To begin with, we need the underlying organizational
structure G0, the maximal growth rate of nodes β, the temporal
fizzling exponent θ, and the maximal linking rate β′. Consider
the G1(t) = (Node(t), Edge(t)) is the evolving network over
G0. Node(t) and Edge(t) are the existing nodes and links in the
system G1 at time t. We can initialize Node(t0) by random or
just give the initial state as input to describe the burn-in period of
the system. The same goes with Edge(t0). Thus, the NETTIDE-
Process goes as follows:
• Node growth. For any existing node i in Node(t) at time
t, i tries to activate each of his neighbors, like j in G0.
If j has not existed in G1 yet, then i tries to invite j to
join with probability pn(t) during the time interval (t, t +
h). If success, we add (j, t) to the node set Node(t), and
(i, j, t), (j, i, t) to the edge set Edge(t).

• Link growth. If j has been in G1 but not being linked to i in
the G1 yet , then i tries to build a link to j with probability
pe(t) during the time interval (t, t + h). If success, we add
(i, j, t) and (j, i, t) to the Edge(t) with timestamp t.

• Activity. If j has being in G1 and being linked to i in the
system already, then i can talk with (any activities supported
in this specific organizational context) j, but no change to the
G1(t) we care about. As the process continues, the network
G1 grows with time.

These two stochastic generators are designed to describe the
stochastic growth dynamics of nodes and links. For reproducibil-
ity, we open our code, see Section 5.
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3.5 Parameter learning
The NETTIDE for node and link together has a parsimonious set
of parameters, namely, Θ = { β, θ, β′, α, γ, N}. Our parameter
learning process has two steps: to learn node equation, and to learn
link equation. Given the real node growth sequence n(t), we aim
to minimize the sum of the square errors:

min
β,θ,N

J(n(t), n∗(t)) =
T∑
t=t0

(n(t)− n∗(t))2 (18)

As for link equation, given the real link and node growth sequence
e(t) and n(t), and the temporal fizzling exponent θ learned by
the node step, we follow the same procedure as the node step to
minimize the sum of the square errors:

min
β′,α,γ

J(e(t), e∗(t)) =
T∑
t=t0

(e(t)− e∗(t))2. (19)

We adopt the Levenberg-Marquardt algorithm (LM) [31] to solve
these non-linear least square problems.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of NETTIDE on
a range of real-world evolving social networks. Here we report
experiments to answer the following questions:
Q1. Accuracy. Can the NETTIDE capture the growth dynamics of

both node and link in real-world social networks accurately?
Q2. Usefulness. How well do the NETTIDE forecast n(t) and

e(t) in both near and far future?
Q3. Generators. Can the NETTIDE-Survival and NETTIDE-

Process generate realistic growth dynamics?

4.1 Datasets
WeChat on-line social network. WeChat is the largest on-line
social network in China with more than 806 million monthly
active users by June 30, 2016. We collected the history data of
WeChat which consists of complete records of the node and link
growth from January 21, 2011 (the day WeChat was released), to
January 16, 2013 when the registered users reached 300 million.
In total, there are 300 million nodes (registered users rather
than monthly active users) and more than 4.75 billion links.
The records document the adding time of each user and the
establishment timestamp of each social link. Thus, we recover
the growth dynamics of both nodes and links from the inception
of WeChat. We treat the bidirectional relationships between users
as two links. Besides, we validate the forecasting capability of our
model by five latest snapshots of the WeChat social networks from
December 17, 2015 to January 14, 2016. All the WeChat data that
we could access were anonymized for strict privacy policy.

ArXiv co-authorship network. This is a scientific collaboration
network covering almost a decade since its inception [1]. If any
two persons were in the author lists of one paper, then they
formed an bidirectional link with timestamp being the date of its
publication. The join date of a person is represented by the date of
his first publication in this dataset. The dataset covers the period
from March 1992 (near the inception of the arXiv) to March 2002.
By filtering the links without explicit date, there are totally 16, 959
nodes and 2, 388, 880 links.

Enron enterprise social network. Through the email records of
Enron [19], we recover the enterprise social network emitted from

the staff of Enron. The dataset covers the period from January
1998 to July 2002, during which Enron bankrupted on December
2, 2001, causing a sharp cut-off of the n(t). In all, there are
86, 458 nodes and 594, 998 links.

Weibo information cascading network. We choose one large
information cascading social network in Tencent Weibo [41],
which is formed by the diffusion of a meme about a popular game.
There are 165, 147 nodes and 331, 607 links, revealing the social
network driven by users’ interest in this game.

4.2 Q1: Accuracy

We validate the NETTIDE by answering Q1, to find out whether
our model can capture the growth dynamics of node and link in
real social networks.

4.2.1 Evaluation methods
We conduct the experiments in four different real social networks
and set five checkpoints to give the empirical evidence for the
validity and the generality of our NETTIDE model. The five
checkpoints are node cumulative dynamics n(t), node rate dy-
namics dn(t)

dt , link cumulative dynamics e(t), link rate dynamics
de(t)
dt , and the densification of the links against the nodes e(n(t)).

We also consider other four methods discussed in Section 2 as
baselines for comparison: Susceptible-Infected (SI), Bass model,
SpikeM, and Phoenix-R (PHR). All these methods are designed
for nodes, thus not applicable to links.

We evaluate the overall fitting accuracy by the Normal-
ized Root Mean Square Error (NRMSE). Given two series,
for example the real node growth sequence n(t) and the cor-
responding sequence n∗(t) given by our model, NRMSE=√

1
T

∑T
t=1(n(t)−n∗(t))2

max(n(t))−min(n(t)) . As a special case when T = 1,
NRMSE degenerates to Absolute Percentage Error (APE(x, x∗) =
|x−x∗|
x ). NRMSE is consistent with the objective function of the

LM algorithm in the sense of L2 norm. And also it can be
compared between datasets with different scales. We also compare
the performance by other standard metric, namely Mean Absolute
Percentage Error (MAPE). We get consistent conclusion and thus
we do not report it for brevity. Table 4 shows the description of
the best fitting parameters for the datasets.

4.2.2 Value and shape accuracy
Our NETTIDE accurately fits growth dynamics of both nodes
and links of WeChat, which span 726 days since the release of
WeChat. The fitting results of the five checkpoints, as depicted in
Fig. 3a-c, show that the growth curves generated by our NETTIDE

almost overlap all the real data points. The fitting covers the
period during which WeChat gained its major population: For
the cumulative number, the overall errors between NETTIDE and
real data are less than 1-percent, 0.76% and 0.66% for n(t)
and e(t) respectively (Table 3). Though the rates exhibits much
larger fluctuation compared with the cumulative numbers, our
NETTIDE model still fits the rates well (as shown in Fig. 3b), with
lowest error compared with baselines (Table 3). The densification
relationship between n(t) and e(t) is perfectly described by
NETTIDE, with overall error 1.08%. Besides, only our NETTIDE-
Link is capable of capturing the link dynamics (Fig. 4b).

We then validate NETTIDE by arXiv and Enron. Our NETTIDE

fits their growth dynamics accurately again, despite the facts of
longer time span (5 and 10 years respectively), the tendency
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Fig. 3. NETTIDE fits reality well. Our model fits the growth dynamics of four real-world social networks accurately. The four rows corresponds to
WeChat (a-c), arXiv (d-f), Enron (g-i) and Weibo (j-l) respectively. In each row, there are five checkpoints: n(t) and e(t) in the first figure, dn(t)

dt
and

de(t)
dt

in the second figure, and e(n(t)) in the third figure.

to saturation, and the unanticipated factors (the bankruptcy of
Enron). The fitting covers the period during which two social
networks gained is 99-percent population. We binned the growth
dynamics of these two data by month (a proper granularity for
co-authorship or enterprise context). The red and blue curves by
our NETTIDE almost overlap all the real data points of arXiv
(Fig. 3d-f) and Enron (Fig. 3g-i). Specifically, NETTIDE-Node
gets the lowest error 0.35% (1.51%) in the arXiv (Enron) case
compared with baselines, as shown in Fig. 4a. Besides, NETTIDE-

Link captures the link growth accurately, 2.18% and 4.54% for
arXiv and Enron respectively. All the baselines are unable to
describe the link growth dynamics as shown in Fig. 4b.

At last, we validate NETTIDE by Weibo, which is a volatile
network and exhibits large fluctuations. Nevertheless, our NET-
TIDE captures the growth dynamics of Weibo well again. We
binned the growth dynamics by 5 minutes because of its volatile
nature. Though the daily fluctuations (ebbs and peaks correspond-
ing to the midnight and office hour respectively as shown in
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Fig. 4. NETTIDE outperforms baselines. NETTIDE-Node consistently
outperform all the baselines with lowest error with respect to NRMSE.
NETTIDE-Link fits all the datasets with very low error. All the baselines
are not applicable to the links.

Fig. 3k) introduce a relatively large error (Table 3), we can still
see the trends given by NETTIDE from the mess in Fig. 3j-l, and
the fitting results of n(t) and e(t) are still good. Specifically,
NETTIDE-Node and NETTIDE-Link get 2.15% and 2.15% error
for n(t) and e(t) respectively. Still the lowest error for n(t) and
no baselines for e(t) are shown in Fig. 4b.

Only our NETTIDE can capture the growth dynamics accu-
rately in both value and shape aspects. So far, NETTIDE has
manifested its ability to capture growth dynamics by the right
shape of curves among the real points and the lowest overall fitting
error. What’s more, our NETTIDE-Link is unique in capturing the
link growth dynamics. Thus, the rhetorical question is whether
our NETTIDE-Node is also unique in its ability to capture the
node growth?

All the state-of-the-art baselines fail to capture the growth of
nodes in either shape or value aspects: The exponential growth
nature of SI and Bass at early stage deviates from the real data
seriously, causing failure in modeling the growth of WeChat
with power law growth. The SI and Bass have very similar
performances in the WeChat case, with errors up to 10.0 times
greater than the results of NETTIDE-Node. In other datasets,
SI also deviates from the real seriously as shown in Fig. 4a,
with errors 16.1, 1.5 and 5.6 times greater than our fitting for
arXiv, Enron and Weibo respectively. Though the incorporating
of market growth in Bass model reduces the error compared with
SI, the exponential shape of Bass curve at early stage is totally
wrong with our power-law like observations. The performance
of SpikeM in different datasets varies a lot. The best fitting of
SpikeM in the WeChat and Weibo cases lie in the sub-critical

TABLE 3
The comparison of the accuracy of NETTIDE and baseline methods on
five checkpoints of the growth dynamics of four real social networks.

The NETTIDE consistently outperforms baselines in almost every check
point. All the baselines are not applicable (—) to the links.

WeChat n(t) e(t) dn(t)/dt de(t)/dt e(n)

NETTIDE 0.76% 0.66% 6.29% 5.07% 1.08%
SI 8.32% — 23.39% — —
BASS 8.31% — 23.64% — —
SPIKEM 20.33% — 48.19% — —
PHR 6.73% — 8.59% — —

arXiv n(t) e(t) dn(t)/dt de(t)/dt e(n)

NETTIDE 0.35% 2.18% 9.91% 11.27% 3.32%
SI 5.97% — 33.83% — —
BASS 0.88% — 11.18% — —
SPIKEM 7.95% — 24.63% — —
PHR 2.03% — 15.07% — —

Enron n(t) e(t) dn(t)/dt de(t)/dt e(n)

NETTIDE 1.51% 4.54% 14.62% 14.27% 4.62%
SI 3.84% — 20.74% — —
BASS 1.51% — 14.54% — —
SPIKEM 1.63% — 18.00% — —
PHR 1.99% — 15.89% — —

Weibo n(t) e(t) dn(t)/dt de(t)/dt e(n)

NETTIDE 2.15% 2.15% 14.93% 14.90% 0.06%
SI 14.19% — 24.51% — —
BASS 2.31% — 15.01% — —
SPIKEM 2.62% — 14.78% — —
PHR 4.45% — 17.53% — —

regime of the hawkes process. However, the SpikeM reports the
largest errors (25.8 times greater than NETTIDE-Node) in the
WeChat case, while a relatively low error (21.9% greater than
NETTIDE-Node) is reached in Weibo. The super-critical regime,
which generates exponential growth at early stage, is reached in
fitting the arXiv and Enron, with errors 21.7 times and 8.0%
greater than NETTIDE-Node respectively. The problems of wrong
shape and largely fluctuated errors also come with Phoenix-R: it
reports the lowest error among the baselines in WeChat, still 7.9
times larger than our NETTIDE-Node. The errors of Phoenix-R
are 4.8, 1.1 times greater than NETTIDE-Node for for arXiv and
Weibo, and 31.8% greater than NETTIDE-Node for Enron.

In all, only our NETTIDE correctly approximates the node and
link growth dynamics of real social networks, in both value and
shape aspects.

4.2.3 Parameter analysis

TABLE 4
The parameters of NETTIDE best fitting each dataset.

N βN θ β′ α γ

WeChat 6.1B 2.16 0.995 0.03 0.14 0.47
arXiv 12584 8.81 1.35 7.56 0.28 0.74
Enron 458143 155.14 1.96 751.19 1.30 0.16
Weibo 18935 0.50 0.84 0.030 1.68 0.02

The best fitting parameters of NETTIDE accurately meet the
characteristics of real growth dynamics of each social network (as
shown in Table 4). In WeChat case, the value of fizzling exponent
θ (0.995 by NETTIDE) is very close to 1, implying the power
law growth of the nodes, with exponent ≈ βN = 2.16 (close
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Fig. 5. NETTIDE forecasts future well. The points represent real data, black filled for training, and the dashed for validation. The red and blue lines
are the forecasting results of NETTIDE-Node and NETTIDE-Link respectively. The gray dashed lines are the results of SI. The above panel is the
results of WeChat, while the panel below is the results of arXiv. (a) and (c) are the results of the short term forecasting, while (b) and (d) are the
results of the long term case.

to 2.15 of the real n(t), in Figure 1a). The exponent of the
densification power law is revealed by 1 + γ = 1.47 (close to
1.41 of the real e(n(t)) as shown in Fig 3c). As for the arXiv,
the learned θ = 1.35, implies a relatively faster temporal fizzling
effect than the Log-Logistic curve with θ = 1. The evolution of
arXiv network has the largest exponent of densification power law
1.74 among four datasets, captured by the γ = 0.74, implying
the tightly-knit structure of the high energy physics community.
The fizzling exponent (1.96) of Enron is the largest among the
datasets, capturing the quick saturation to the ceiling caused by
the bankruptcy of Enron. The structure of the company of Enron
shows the hierarchical structure like tree, due to the relatively
small exponent of the densification power law 1.17 (captured by
NETTIDE γ = 0.16), when compared with other social network
data. The tree structure of WeChat shows linear growth of link
with node, which makes the γ ( γ = 0.02 by NETTIDE) very
close to zero. The best fitting value θ = 0.84, exhibits a faster-
than power-law growth at early stage due to the fast growth nature
of Weibo.

4.3 Q2: Usefulness-forecasting
We show the practical value of our NETTIDE by answering Q2, to
forecast both the count of nodes and links, in the short term and
in the long term.

4.3.1 Short-term forecasting
In the short-term forecasting setting, we validate NETTIDE’s
forecasting capability by examining the overall predictive error
into the future (overall forecasting task) and the arrival of some
checkpoints marked as milestones (milestone forecasting task).
Specifically, taking WeChat as an example, by training the dy-
namics of nodes within first 100 million : the overall forecasting
task is to examine how well NETTIDE-Node forecast the growth
dynamics of next 200 million nodes; the milestone forecasting task
is to forecast the date when WeChat network doubles and triples
its size. We denote the t1, t2, t3 as the date of the milestones.
In WeChat case, they are the dates when WeChat network hit
its first 100, 200, 300 million nodes respectively, as shown in
Fig. 5a. In arXiv case, they are the dates of reaching 3000,
6000, 9000 authors respectively, in Fig. 5c. The same task goes
with NETTIDE-Link, in which case the number of links is never
predicted before.
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Overall forecasting. Both NETTIDE-Node and NETTIDE-
Link can forecast future dynamics very accurately, covering 291
and 730 days in the future for WeChat and arXiv respectively. In
the WeChat case, the overall errors are 2.18% for n(t) and 0.44%
for e(t) between the forecasting results by NETTIDE and the real
dynamics from t1 to t3 (Fig 5a). For the arXiv, the overall errors
are 2.86% and 4.18% for n(t) and e(t) respectively (Fig. 5c)
from t1 to t3 . We also compare the forecasting results by SI:
the sigmoid curve seriously overestimates the growth with overall
error 134.62% for n(t) in WeChat case, and underestimates the
n(t) of arXiv with overall error 52.14%. The SI is not applicable
to the e(t) (no dashed lines for Link in Fig. 5).

Milestone forecasting. Both NETTIDE-Node and NETTIDE-
Link can forecast the arrival of milestones with very low error,
both for the date and the count. Specifically, in WeChat case shown
in Fig 5a, NETTIDE-Node forecast the arrival of first 200 million
nodes 5 days earlier than the real date t2 (172 days ahead into
the future), and the arrival of first 300 million nodes 10 days
later then real date t3 (291 days ahead into the future). At t2
and t3, the forecasting errors are 1.67% and 2.58% for n(t), and
0.26% and 0.33% for e(t) respectively. As for the arXiv network,
despite the fact that the t2 (t3) is 420 (810) days ahead into the
future, NETTIDE-Node can forecast the arrival of the milestones
(6000, 9000 authors) within one month centering the real date.
(The time granularity we choose is just one month for arXiv
and Enron.) The forecasting errors at t2 and t3 are 0.91% and
2.47% for n(t) respectively, while 11.32% and 2.75% for e(t). In
contrast, the results of nodes predicted by SI are seriously biased:
in WeChat case, 93 days earlier for t2 and 167 days earlier for
t3; the deviations increase with time, more than 300% deviation
at t3. As for the arXiv, SI seriously underestimates the number of
the nodes at milestones: more than 260% underestimation at t3.
Again, there are no baselines for link growth.

In all, our NETTIDE achieves a surprisingly high forecasting
accuracy for both node and link growth in the short term.

4.3.2 Long-term forecasting, 2 years ahead
Our NETTIDE also shows accurate forecasting results in the long
term, 730 and 870 days ahead into the future for WeChat and
arXiv respectively.

As for the WeChat case, NETTIDE-Node can forecast the
number of nodes 730 days ahead into the future accurately
(Fig 5b). We train NETTIDE-Node by the growth dynamics before
t3, and then we validate the forecasting results of NETTIDE in the
long term by 5 latest snapshots of the WeChat social network. The
5 latest checkpoints span more than one month (December 17, 25,
2015, and January 1, 8, 14, 2016). For the privacy issues, we do
not report the exact number of registered users and the number
of links. We set the initial total population N to be 6.1 billion,
the smart-phone users globally by 2020, reported by Ericsson2.
Because one user can only register the WeChat successfully
through the verification of his phone number. The errors for n(t)
at these five checkpoints are consistently low, 2.86%, 2.72%,
2.68%, 2.68% and 2.64% for each checkpoints respectively.
However, the node growth curve of SI seriously overestimates the
real node growth: the saturation point is reached much earlier, and
with 350% deviation with the real data at 2016/1/14.

In the arXiv case, NETTIDE can forecast both the n(t) and
e(t) accurately in the long term, 870 days ahead into the future

2. http://www.ericsson.com/mobility-report

as shown in Fig 5d. We train both NETTIDE-Node and NETTIDE-
Link by the real growth dynamics before t3, and we get overall
error 2.84% for n(t) and 3.56% for e(t), covering 870 days in
the future. However, the forecasting results of the number of nodes
by SI seriously underestimates the real number, up to 200% off
the reality.

4.4 Q3: Generators

So far, we have examined the accuracy and usefulness of our
NETTIDE model. Here we generate realistic growth dynamics
as WeChat by both two generators, i.e., the NETTIDE-Survival
generator and the NETTIDE-Process generator.
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Fig. 6. NETTIDE-Survival generates realistic stochastic dynamics. (a-b)
Ten stochastic trajectories of n(t) (squares 2) and dn(t)

dt
(dash-dot line)

generated from NETTIDE-Survival respectively. The solid lines are the
fitting results by our NETTIDE model. Each specific color corresponds
to one generated instance. (c-d) are the counterparts for links. (e-f)
The histograms of power-law exponents for generated n(t) and e(t)
respectively. 1, 000 n(t) and e(t) trajectories are generated by NETTIDE-
Survival. The red asterisks denote the real exponents in WeChat case.
The curves in inset on log-log scale are the same n(t) and e(t) as in
(a-b), which exhibit power-law early growth.

4.4.1 Stochastic dynamics from NETTIDE-Survival
The NETTIDE-Survival generator generates stochastic trajectories
of node and link growth from hazard rates directly as shown
in Sec3.4. For different combination of modeling parameters
(β, θ,N, β′, α, γ), NETTIDE-Survival can generate a wide range
of node and link trajectories. Here we report one specific setting
(β = 2.45 × 10−4, θ = 1, N = 104, β′ = 0.5, α = 0.9, γ =
0.52) which generates similar growth dynamics as WeChat, which
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follows power-law growth with exponents 2.15 and 3.01 for nodes
and links respectively. We open our code for generating stochastic
growth dynamics in arbitrary parameter settings.

Figures 6a-d illustrate ten stochastic instances generated by the
NETTIDE-Survival which are distinguished by different colors.
Although the NETTIDE-Survival generates quite different n(t),
dn(t)
dt , e(t), and de(t)

dt with stochastic fluctuations, surprisingly, our
NETTIDE capture all the stochastic trajectories quite well. Due to
fact that θ = 1, the NETTIDE-Survival generate power-law-like
growth dynamics, as shown in insets of Figs. 6e-f. We generate
1, 000 n(t) and e(t) instances by NETTIDE-Survival and fit the
generated power-law early growth of by least square method.
Figures 6c&f show the distributions of the power-law exponents of
node and link growth respectively, indicating that the NETTIDE-
Survival generate n(t) and e(t) with power-law exponents near
2.15 and 3, implying that the NETTIDE-Survival successfully
reproduces the WeChat growth dynamics.

4.4.2 Stochastic dynamics from NETTIDE-Process
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Fig. 7. NETTIDE-Process generates realistic stochastic dynamics. (a-b)
Ten stochastic trajectories of n(t) (squares 2) and dn(t)

dt
(dash-dot line)

generated from NETTIDE-Process respectively. The solid lines are the
fitting results of the generated stochastic trajectories by our NETTIDE
model. Each specific color corresponds to one generated instance.
(e) The histogram of power-law exponents of 1, 000 n(t) trajectories
generated from NETTIDE-Process. The red asterisk denotes the real
exponent in WeChat case. The curves in inset on log-log scale are the
same n(t) as in (a), which exhibit power-law early growth. (cd&f) are the
counterparts for links.

We further analyze the second stochastic generator of the NET-
TIDE from micro-level stochastic interactions within a network,
i.e., the NETTIDE-Process. Given the underlying organizational
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Fig. 8. NETTIDE-Process can be inferred by NETTIDE. The parameters
of the NETTIDE-Process and the underlying random graph are inferred
by our NETTIDE model. (a-f) The histograms of the inferred parameters
of the same 1, 000 instances as in Fig. 6. The asterisks in red denote the
real values of the parameters used in NETTIDE-Survival. In the reference
process, we set γ = 1 for the random graph case.

structure G0, the modeling parameters we need for simulation
are (β, θ, β′). As discussed in model section, under the random
graph assumption, the micro-pairwise infection probability pn(t)
and linking probability pe(t) during time interval (t, t+h) can be
derived from equation 16 and 17 respectively. We again report our
results under the setting (β = 2.485 × 10−4, θ = 1, β′ = 0.48)
and G0 = RandomGraph(α = 0.01, N = 104), which
again generates similar growth dynamics as WeChat case. For
generating stochastic trajectories in arbitrary parameter settings
can be realized by our open-sourced code.

The stochastic growth dynamics generated by NETTIDE-
Process are shown in Fig. 7. Again, the solid curves almost
hit every dot, indicating that NETTIDE fits the stochastic n(t),
dn(t)
dt , e(t), and de(t)

dt well. By using the NETTIDE-Process with
aforementioned parameters, we generate 1, 000 stochastic growth
instances. We find the generated trajectories show power-law early
growths (illustrated in the insets of Figs. 7e-f), and the power-law
exponents of n(t) and e(t) are close to 2.15 and 3, implying the
NETTIDE-Process generate realistic growth dynamics as WeChat
case.

We further examine whether NETTIDE can uncover the “real”
parameters which NETTIDE-Process used. In fitting process, we
set the γ = 1 due to the random graph setting. We find NETTIDE

infers the modeling parameters as shown in Fig. 8. Our NETTIDE

not only finds the values of β, θ and β′ which controls behaviors,
but also uncovers the structure parameters N = 104 and α =
0.01.

In all, both NETTIDE-Survival and NETTIDE-Process can
generate realistic growth dynamics of the node and link, and the
generated stochastic growth dynamics can be well captured by
NETTIDE well.

5 CONCLUSIONS

In this paper, we studied the growth dynamics of real-world social
networks and presented NETTIDE to capture growth dynamics of
both nodes and links. We examine a range of real-world evolving
social networks, especially China’s largest online social network
WeChat. We find both node and link in real social networks
follow Power-Law growth, rather than the exponential growth
or uniform growth as expected. Thus, we propose NETTIDE,
along with differential equations for the growth of the number
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of nodes, as well as links. Our NETTIDE-Node gives a unified but
parsimonious model to capture real social network growth, like
the power law early growth of the Log-Logistic growth, and more
general form Stretched-Exponential early growth of the Stretched-
Logistic growth. Our NETTIDE-Link is the first-ever differential
equation to capture the growth dynamics of links, accurately
fitting reality. Furthermore, we propose two stochastic generators,
i.e., NETTIDE-Survival and NETTIDE-Process, which generate
realistic growth dynamics from the perspective of survival analysis
and microscopic level stochastic interactions within a network
respectively. Our NETTIDE again accurately fits the stochastic
generators, and infers the parameters of the generators well. The
main contributions are:

1) Novel model NETTIDE: NETTIDE-Node captures a wide
range of growth dynamics and NETTIDE-Link is the first dif-
ferential equation to capture the link growth dynamics. Both
equations are parsimonious and explainable on microscopic
level.

2) Accuracy: We presented experiments on four real-world
evolving social networks, especially the WeChat (300 million
nodes, 4.75 billion links). Our NETTIDE model matches the
real-world growth dynamics accurately.

3) Usefulness: Our NETTIDE can be used to both the short-term
and long-term forecasting. We validated NETTIDE’s forecast
power empirically, and showed that it can forecast the nodes
and links in the short term and even the long term accurately
(730 and 870 days ahead into the future for WeChat and
arXiv respectively).

4) Generators: We propose two stochastic generators at micro-
scopic level, i.e., NETTIDE-Survival and NETTIDE-Process,
which successfully generate realistic stochastic growth dy-
namics.

Reproducibility: We have already open-sourced our code of
the NETTIDE together with two generators NETTIDE-Survival
and NETTIDE-Process, to fit/generate the deterministic/stochastic
growth dynamics of both nodes and links, at https://github.com/
calvin-zcx/NetTide

There exist many directions of further studies. First, the
proposed growth models can be applied to validate the ubiquitous
growth phenomena in other fields, like the ecology, social science,
demography, and so on. Second, inspired by the physical meanings
of the modeling parameters of NETTIDE, how to improve the
social network services and boost the social behaviors are open
questions. Third, one major limitation of our NETTIDE is the
neglect of external influences. How the external signals influence
the growth or decay dynamics of social networks remains to be
examined.
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