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ABSTRACT
Pattern formation is a ubiquitous phenomenon that describes the
generation of orderly outcomes by self-organization. In both phys-
ical society and online social media, patterns formed by social
interactions are mainly driven by information flow. Despite an
increasing number of studies aiming to understand the spreads
of information flow, little is known about the geometry of these
spreading patterns and how they were formed during the spreading.
In this paper, by exploring 432 million information flow patterns
extracted from a large-scale online social media dataset, we un-
cover a wide range of complex geometric patterns characterized by
a three-dimensional metric space. In contrast, the existing under-
standing of spreading patterns are limited to fanning-out or narrow
tree-like geometries. We discover three key ingredients that govern
the formation of complex geometric patterns of information flow.
As a result, we propose a stochastic process model incorporating
these ingredients, demonstrating that it successfully reproduces
the diverse geometries discovered from the empirical spreading
patterns. Our discoveries provide a theoretical foundation for the
microscopic mechanisms of information flow, potentially leading
to wide implications for prediction, control and policy decisions in
social media.
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1 INTRODUCTION
Pattern formation is ubiquitous in nature [5, 34], ranging from
physics [3, 33, 43] to biology [35, 46], from chemical reactions [55]
to social interactions [1, 19, 30, 63, 64]. During the past years, much
effort has been made towards modeling information flow across
individuals in both physical society [10, 41] and online social media
[12, 56, 64], aiming to enhance our understanding of the formation
of complex social systems. Yet, little is known about the geometric
patterns formed during the spreads of information [11, 20–22, 39,
49, 62]. Existing models such as epidemic models [23, 29, 48] and
branching process [28, 36, 58] are prone to generating fanning-out
or star-like patterns (Figure 1 C-D). However, real-world patterns of
information flow seem to be much more complicated. For instance,
Liben-Nowell and Kleinberg [41] found an unusual pattern with
narrow and deep tree structure in the Internet chain-letter data.
These findings raise a number of important questions:

• To what extent a complex spreading pattern can ever form?
• What are the underlyingmechanisms governing the complex
pattern formation of information flow?

• Can we generate realistic geometric patterns of information
flow?

Answering these questions not only enhances our understanding
of the formation of spreading patterns but also delivers compu-
tational tools to predict information flows, potentially leading to
applications for dissemination of new technology [6, 7, 53, 62] and
understanding the formation of public opinion [16, 18, 27, 59] or
fake news [38, 57]. This paper tries to answer these questions.

A systematic study on the complexity of geometric patterns of
information flow is missing partly due to the lack of reliable large-
scale empirical datasets. Indeed, most studied datasets often lack
explicit attributions tracking the information flow. For example,
the Twitter dataset does not provide an explicit ’retweet’ tag for
each tweet, leaving difficulty in inferring the appropriate infor-
mation flow [37, 54]. In this paper, we explore a large-scale social
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media dataset which consists of 101 million users and 432 million
information cascades among users within a 7-day period [65]. The
presented data tracks all steps when a post is being created or for-
warded, serving as one of the most accurate datasets to address
aforementioned questions. Remarkably, we discover a broad class
of geometries from the real-world spreading patterns (Examples
shown in Figure 1 A), unveiling the complexity emerged during the
pattern formation. Next, we introduce three key metrics to charac-
terize geometric patterns, finding systematic discrepancies between
existing models and empirical observations. Finally, we uncover
three novel ingredients that govern the complex pattern formation
of information flow, and then propose a stochastic process model
based fundamentally on these three ingredients, which successfully
captures the complex nature of geometric patterns observed in the
real world.

It is worthwhile to highlight our contributions as follows:
• Novel Findings: Driven by a real-world information flow
dataset with explicit spreading traces at large scale, we find
complex geometric patterns of information flow and then
propose metrics to quantify their geometric patterns in a
three dimensional space.

• Novel Mechanisms:We find three key mechanisms which
govern the formation of the complex geometric patterns
of information flow, which are largely ignored by previous
spreading models.

• A Novel Model: Based fundamentally on the mechanisms
we find, we propose a stochastic process model which suc-
cessfully captures the complex geometric patterns formed
during the spreading of information flow.

2 RELATEDWORK
Patterns of information flow in social media. How informa-
tion spreads over social network is one of the core topics in both
social science and computer science. Temporal/Dynamic patterns of
information flow are studied empirically in literature [44, 51, 60, 62]
etc. and in information cascading prediction literature [15, 40, 61,
67] etc. Influence modeling and maximization works [4, 14, 32, 52]
try to make an information cascade reach audiences as many as
possible, namely the final size of a cascade. However, these work
largely ignores the structural patterns of information flow.

Seminal studies on the structural patterns of information flow
includes [2, 21, 22, 39, 41, 49] etc. They find dominated star-like
patterns of information flow [21] in social media like Twitter, and
unusual pattern with narrow and deep tree structure in the Internet
chain-letter data [41]. Besides, studies including [25, 50] try to infer
the spreading structures from their temporal records. However, the
lack of the explicitly spreading traces like the Twitter datasets and
the limited number of data samples in the chain letter dataset [41]
prevent us from a wholistic view of the structures of information
flow. Indeed, with the access to new datasets of information flow in
social media, recent empirical studies [42, 65] find rich complexities
in the geometric patterns of information flow. However, princi-
pled metrics which quantify the complex geometric patterns of
information flow are still missing. How to model the spreading pro-
cess of information flow which captures these potentially complex
geometric patterns is still largely unknown?

Spreadingmodels.Current frameworks ofmodeling the spread-
ing of information flow mainly fall into two categories: i) the epi-
demic model [31, 45, 48] which treats a spread of information flow
as a contagion process between individual agents. Simple-contagion
models [8, 29, 48] often assume independent pair-wise social in-
teractions whereas complex contagion models [13, 17, 54] account
for the possibility that a susceptible agent may get exposures from
multiple infected neighbors simultaneously; ii) the branching pro-
cess which assumes that each individual forwards the message to a
set of offspring neighbors, where the total offspring size is drawn
randomly from a predetermined offspring distribution function
[24, 36, 58]. However, we find large discrepancy between these
models and the empirical observations. These spreading models
fail in capturing the complexities in the geometric patterns of in-
formation flow in the real-world.

3 QUANTIFYING THE GEOMETRIC
PATTERNS OF INFORMATION FLOW

3.1 Dataset
We collected information flow data from Tencent microblog plat-
form (t.qq.com), which records explicit information of each in-
dividual’s activity when he/she creates or forwards a post. The
underlying social network (followee-follower network) is recon-
structed based on the observed forwarding activities (Sec. C in
Supplementary Information). A cascade is constructed by following
the information propagation starting from the original post and
forwarded among followers. The dataset contains all the posts over
a 7-day period between June 20, 2012 and June 26, 2012, consisting
of 563, 331, 392 posts, 101, 802, 707 users, and 432, 101, 384 cascades.

3.2 Proposed Metrics
To quantify the geometric patterns of information flow, we use
three representative metrics:

• Mass n that measures the total number of individuals in-
volved in spreading,

• Polarity v that measures to what extent information flow
is being directionally dependent, which implies different
spreading tendency along different directions, characterized
by the variance of the pair-distance among all the infected
individuals in spreading (Detailed formula with examples in
Supplementary Information Sec. A),

• Outreach d that measures the largest distance information
flow can ever reach.

The proposedmetrics (n,v ,d) offer a three-dimensional space where
different regimes of the space correspond to different geometries
of the observed spreading patterns shown in Fig. 1 A. For instance,
the observed large size patterns with narrow-and-deep structure
correspond to largen,v , andd values. Indeed, a perfect chain pattern
predicts the polarityv ∼ O(n2) and the outreach d ∼ O(n), whereas
a perfect star pattern predicts v ∼ O(0) and d ∼ O(1) independent
of its mass n (see Sec. A in Supplementary Information). Figure 2
A-C enumerates all typical geometric patterns represented in the
metric space.
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Figure 1: Illustrations of the geometric patterns of information flow for empirical data and different models. (A) Twenty empir-
ical patterns with size 100± 3 and increasing polarity value, each representing an information spreading starting at the center
node colored in green. Nodes and links represent users and retweeting, respectively. Different colors correspond different
community groups discovered by [9]. (B-D) Spreading patterns generated by (B) our proposed model, (C) the epidemic model
and (D) the branching process model, respectively.

3.3 Empirical Geometric Patterns
We measure n, v , and d for all 432 million spreading patterns (or
cascades) observed in the dataset and plot the density profiles for
n vs. v , n vs. d and d vs. v in Fig. 2 D-F respectively. We find that
most spreading patterns fall into regions with small n, v , and d
values, indicating that the vast majority of spreading patterns share
a star-like pattern. We also observe the existence of large mass
patterns (i.e., n > 100), implying the fat-tailed nature of the mass
distribution of spreading patterns. Moreover, the polarity v and
outreach d of these patterns vary over a large range of values,
revealing the richness of geometric patterns in the real world. For
instance, Figure 2 D-E show large v and d values for mass n ∼ 100,
indicating that the geometries of these patterns with moderate mass
are most complex whereas ones with extremely large or small mass
are relatively simpler. We also found in Fig. 2 F that the polarity
and the outreach are positively correlated, yet there exists a large
variance between these two metrics, implying rich complexities in
empirical geometric patterns.

4 FAILURE OF EXISTING MODELS
Current frameworks of modeling the information flow mainly fall
into two categories:

• the epidemic model [31, 45, 47, 48] which treats a spread of
information flow as a contagion process between individual
agents. Simple-contagion models [8, 29, 39, 48] often assume
independent pair-wise social interactions whereas complex
contagion models [13, 17, 54] account for the possibility that
a susceptible agent may get exposures frommultiple infected
neighbors simultaneously;

• the branching process which assumes that each individual
forwards the message to a set of offspring neighbors, where
the total offspring size is drawn randomly from a predeter-
mined offspring distribution function [24, 36, 58].

To demonstrate the discrepancy between existing models and
the empirical observations, we perform simulations of the branch-
ing process model [36, 58] and two epidemic models [8, 26, 49],
namely the Susceptible-Infected-Susceptible (SIS) model and the
Susceptible-Infected-Recovered (SIR) model. We use the maximum
likelihood estimation used in [24, 26] to evaluate the most likely
modeling parameters of SIS from the real data, and generate 432mil-
lion cascades, each starting from the corresponding original poster
observed in the empirical data 1. Figure 1 C-D plots the spreading

1Here we plots the results of SIS model. The SIR model gives almost the same results
as the SIS model
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Figure 2: Quantifying the geometric patterns of information flow via the three-dimensional metric space (mass, polarity, out-
reach). The projected two-dimensional space for (A) mass vs. polarity, (B) mass vs. outreach and (C) outreach vs. polarity, and
we illustrate typical geometric patterns with typical metric values. Heat maps demonstrated two-dimensional probability den-
sity profiles (logarithmically transformed) for (D-F) 432, 101, 384 spreads extracted from the empirical data, (G-I) the proposed
model, and the existing models including (J-L) the SIS model and (M-O) the branching process, respectively. All the models
generate the same amount of spreads as the empirical dataset, and the modeling parameters are evaluated via maximum
likelihood estimation from the empirical data.
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Figure 3: Three ingredients governing complex pattern formation of information flow. (A) The influence distribution on a log-
log plot that demonstrates the heterogeneity across the userbase. The inset depicts the joint distribution of the influence for
different roles, i.e., users acting as an original poster versus a retweeter, where the color represents the probability density.
(B) Test of the collectiveness effect by evaluating the rejection rate of the null non-collective hypothesis. The bar plot shows
the rejection proportion of users versus the users’ degree, where we set 5% significance level for the two-sample Kolmogorov-
Smirnov test. (C) The distribution of the recurrence,m, that measures the number of messages a user posts in a single spread,
showing a fat-tailed distribution with a power law exponent γ = 3.53 ± 0.34, and the dashed line plots the prediction of a null
model without the memory effect and therefore is a narrow-tailed distribution.

patterns generated by the epidemic model and the branching pro-
cess model respectively. Unlike the empirical data that reveals a rich
set of spreading patterns, the existing models mostly generate star-
like patterns. To quantify the difference, we measure mass, polarity,
and outreach values for the generated spreading patterns by these
models. Figure 2 J-O plots the joint distributions of the generated
spreading patterns in our three-dimensional metric space. We find
that, unlike the empirical data, for both models the polarity values
are less than 10 and show little correlations with the mass (Figure 2
J&M), implying that these models can only generate simple pat-
terns no matter how many individuals are involved in spreading.
Similarly, we also observe that for both models the outreach values
are very small, and the correlations between outreach and mass
are very weak although there may exist some slight correlation
for branching process (Figure 2 K&N). However, for both models
polarity and outreach show strong positive correlations (Figure 2
L&O) in contrast with the empirical data (Figure 2 F).

In a word, existing models cannot capture the observed complex
geometric patterns of information flow.

5 PROPOSED MODEL
5.1 Mechanisms
The failure of existing models implies the existence of unexplored
mechanisms for the complex pattern formation of information flow
which are not captured by these models. Indeed, we uncover that
there are three essential ingredients governing complex pattern
formation of information flow in the real world:

• Heterogeneity. In the real world, individuals have signifi-
cantly different abilities to infect others. For instance, an
individual with a larger number of connections often influ-
ences more neighbors than others. To quantify the difference
between individuals’ influence, we measure the number of
neighbors infected by a user i (i.e., the offspring size bi ) for

all the cascades in which i participated. The average off-
spring size ⟨bi ⟩ over all cascades characterizes the influence
of individual i . Figure 3 A shows that the user influence ⟨b⟩
follows heavy-tailed distribution, demonstrating that indi-
viduals have highly inhomogeneous ability to infect others.
Furthermore, individual plays different roles in information
spreading. For example, a microblog user can act either as an
original poster who initiates a cascade, or a retweeter who
retweets the information from others. To quantify this, we
measure each individual’s influence for posting, ⟨b⟩p , and for
retweeting, ⟨b⟩r , respectively. Figure 3 A inset plots the joint
distribution of ⟨b⟩p versus ⟨b⟩r , showing that despite the
positive correlation between these two quantities there is a
large variance between them. The above quantified evidence
underpins the observation of heterogeneity in information
spreading.

• Collectiveness. While the existing models, such as SIS model
and SIRmodel, assume infection happens independently over
each pair of individuals, we observe the evidence that infec-
tion dynamics often occur collectively, i.e., a group of users
may be infected simultaneously, leading to a heavy-tailed
offspring size distribution (Fig. 5 in Supplementary Infor-
mation). In contrast, both SIS and SIR assume independent
infection along each link and thus predict a binomial off-
spring size distribution. We apply two-sample Kolmogorov-
Smirnov test to the observed offspring size distribution p(b)
of each user to measure the discrepancy between the pre-
dicted binomial distribution and the empirical data. Figure 3
B plots the rejection rate of the null hypothesis that the
branching factor pi (b) of user i follows binomial distribution
grouped by user’s degree k (the number of friends), finding
that the rejection rate increases with k , indicating the fact
that larger degree nodes have stronger collective effect. For



instance, over 66% users with degree 1000 reject the null hy-
pothesis, whereas the rejection rate increases to more than
94% for users with degree 10, 000.

• Memory. Individual’s spreading behaviors depend largely on
his/her historical events, leading to a long range temporal
correlation between information flows. To capture the mem-
ory effect at each individual level, wemeasure the recurrence,
m, the number of times an individual appears in one cascade,
and plot the recurrence distribution p(m) over all cascades
in Figure 3 C. We find that p(m) follows a heavy-tailed distri-
bution. In contrast, a memoryless model such as SIS model
shows a narrow-tailed distribution. For example, we observe
that a user appeared in a cascade more than 300 times, while
the memoryless model only predicts the recurrence less than
3 times.

5.2 A Stochastic Process Model
Here we present a stochastic process model which incorporates all
these observed ingredients to capture the complex pattern forma-
tion of information flow:

• Start from a single node i as an original poster, who randomly
posts a seed of information, and then its offspring nodes can
get infected because of posting.

• Draw the offspring size b randomly from the distribution pi
to determine the number of neighbors being infected after-
wards, where pi is the pre-determined modeling parameter
that captures the offspring size distribution of the original
poster i .

• Select randomly a set ofb nodes from the neighbors of node i .
The probability of a neighbor j to be selected is proportional
towi, j,m , wherem indicates the recurrence of the individual
j. We assume the selection probability can be factorized as
productwi, j,m = qi, j ×α j,m , where the modeling parameter
qi, j captures the infective heterogeneity for the pair i and j,
and the modeling parameter α j,m captures the memory ef-
fect. A group of nodes are collectively selected to be infected
in each step, which incorporates the collective effect.

• Repeat step 2 and 3 for the newly infected nodes until no
node is further infected. Note that instead of using pi , we
use ri as the offspring size distribution for the retweeters to
incorporate the heterogeneity in spreading roles.

5.3 Parameter Inference
All the modeling parameters (pi , ri ,qi, j ,α j,m ) are estimated from
the empirical data through maximum likelihood estimations.

Here we show the method on estimating the modeling param-
eters of our minimal model. We first estimate the offspring size
distribution pi (b) and ri (b) for a user i when he/she acting as an
original poster and a retweeter respectively. Let f pi (b) (f

r
i (b)) be

the number of cascades in which the user i acts as an original poster
(a retweeter) with offspring size b, and pi (b) (ri (b)) be the probabil-
ity of user i with offspring size b when he/she acts as an original
poster (a retweeter). Then the likelihood function of the original

posters is

L
p
i (b) =

∏
b

pi (b)
f pi (b), (1)

and its corresponding log-likelihood function is

lnLpi (b) =
∑
b

f
p
i (b) lnpi (b). (2)

To maximize the log-likelihood function subject to the constraint∑
b
pi (b) = 1, we impose the Lagrange multiplier:

Λ(b, i, λ) =
∑
b

f
p
i (b) lnpi (b) + λ(

∑
b

pi (b) − 1). (3)

We require

∂Λ

∂pi (b)
=

f
p
i (b)

pi (b)
+ λ = 0, (4)

and then leads to
λ = −

∑
b

f
p
i (b), (5a)

pi (b) = −
f
p
i (b)

λ
. (5b)

Finally, the maximum likelihood estimation (MLE) of pi (b) is the
fraction of i with offspring size b when i acts as the original poster:

ˆpi (b) =
f
p
i (b)∑

b
f
p
i (b)

. (6)

And ri (b) shares the same derivation procedure as pi (b). Thus, the
MLE for ri (b) is:

ˆri (b) =
f ri (b)∑
b
f ri (b)

. (7)

The pairwise infection probability between user i and user j,
denoted by qi, j , is calculated by the ratio of fi, j to fi , where fi, j is
the total number of times user j retweeting user i’s microblog, and
fi is the number of times i posting or retweeting microblogs:

qi, j =
fi, j

fi
. (8)

The memory factor αi,m is proportional to the ratio of ci,m to
ci , where ci is the number of cascades that user i participated, and
ci,m is the number of cascades that user i participated form times:

αi,m ∝
ci,m
ci
. (9)

6 RESULTS
Figure 1 B illustrates spreading patterns generated by our proposed
model, showing a good agreement with the empirical patterns as
shown in Figure 1 A.

To further compare our proposed model with the empirical data
quantitatively, we perform numerous simulations of information
spreading over the empirical network (see Sec. C in Supplementary
Information) where the spreading dynamic is determined by the
proposed model.
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Figure 4: Model evaluation. Probability density functions for the three metrics (A) mass, (B) polarity and (C) outreach for
spreads generated by our proposed model (red solid curve), the SIS model (black dotted curve) and the branching process
(black dashed curve), compared with the empirical data (circles).

We measure the three-dimensional metrics, i.e., mass, polarity
and outreach for all the simulated spreading patterns. Figure 4 A
plots the mass distributions for the empirical data, the proposed
minimal model, the epidemic model and the branching process
model respectively, finding that both our model and the branching
process fit well the empirical mass distribution while the epidemic
model fails to capture the distribution’s fat-tailed nature. Figure 4
B plots the polarity distributions for the empirical data and all the
models. Our model predicts a heavy-tailed distribution [66] in line
with the empirical observations. Previous models, however, only
generate limited polarity values. Similarly, the outreach distribu-
tions shown in Figure 4 C also suggest a good agreement between
our model and the empirical data while the existing models fail in
reproducing the large outreach patterns.

Furthermore, our model captures not only the probability distri-
bution of these metrics but also their correlations. Figure 2 G-I plots
the density profiles for mass versus polarity, mass versus outreach,
and outreach versus polarity for our model, respectively. Again, we
find perfect agreements between the real patterns and the proposed
model. In contrast, while the branching process predicts correctly
the empirical mass distribution, it fails to capture the essential corre-
lations between the mass and other metrics, i.e. polarity or outreach.
Thus, our model captures the observed complex geometric patterns
of information flow.

7 CONCLUSION
In summary, by exploring a large-scale dataset consisting of 432mil-
lion information cascades, we observe complex geometric patterns
of information flow characterized by a three-dimensional metric
space, finding systematic deviations from the prediction of the tra-
ditional epidemic models and the branching process. We find three
ingredients, i.e., heterogeneity, collectiveness, and memory effect,
which govern the complex pattern formation of information flow.
Finally, we proposed a stochastic process model incorporating these
ingredients that enables to reproduce the complex information flow
patterns emerged in the real world. As our understanding on the
mechanisms of information flow deepens with the emergence of
increasingly detailed data, our discovery of the three fundamental
ingredients and the proposed model suggest a possible basis for

the future mechanistic understanding of the pattern formation of
information flow. Our model can be potentially used to verify broad
spreading mechanisms and phenomena, and can be potentially
applied to prediction, control, and marketing scenarios in social
media.

SUPPLEMENTARY INFORMATION
A POLARITY METRIC
Polarity v measures to what extent information flow being direc-
tionally dependent, implying different spreading tendency along
different directions, which is characterized by the variance of the
pair-distance among all infected individuals. Perfect star pattern
and perfect chain pattern are two extremes with respect to polarity.
A perfect star with mass n, denoted as Sn , consists of a central node
and n − 1 satellite nodes. The shortest path length (l ) between any
two nodes falls into two categories:

(n−1
2
)
satellite-to-satellite pairs

with length 2 and
(n−1

1
)
satellite-to-center pair with length 1.

Then the polarity of a perfect star pattern is calculated by

v(Sn ) =
(2−µ)2(n−12 )+(1−µ)

2(n−11 )

(n2)
= 2n−4

n2 (10)

where µ is the average distance between any two nodes in an
undirected graph, calculated by

µ(Sn ) =
2(n−12 )+1(

n−1
1 )

(n2)
= 2 − 2

n . (11)

As for a perfect chain with mass n, denoted as Cn , there are n − 1
pairs with length 1, n − 2 pairs with length 2, ..., and 1 pair with
length n − 1. In order to get the closed form v(Cn ), we introduce:

A(n) = 1(n − 1) + 2(n − 2) + ... + (n − 1)1 (12)
B(n) = 12(n − 1) + 22(n − 2) + ... + (n − 1)21 (13)

where A(0) = B(0) = 0 and A(1) = B(1) = 1. A(n) and B(n) can be
transformed into recursive forms:

A(n) = A(n − 1) + (n − 1) + ... + 1 = A(n − 1) +
(n − 1)n

2
(14)

B(n) = B(n − 1) + (n − 1)2 + ... + 12 = B(n − 1) +
(n − 1)n(2n − 1)

6
(15)



By solving these two equations, we get:

A(n) = n(n2−1)
6 (16)

B(n) = n2(n2−1)
12 (17)

Thus,

µ(Cn ) =
A(n)
(n2)
=

n + 1
3

(18)

v(Cn ) =
B(n)
(n2)

− µ(Cn )
2 =

n2 − n − 2
18

(19)

Indeed, a perfect chain pattern Cn predicts the polarity v ∼ O(n2),
whereas a perfect star pattern Sn predicts v ∼ O(0) independent
with its mass n.

B OFFSPRING SIZE DISTRIBUTION
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Figure 5: The offspring size distribution on a log-log plot.

Wemeasure the number of infected neighbors for each individual
user, i.e., the offspring size b, in each cascade. By aggregating 432
million empirical cascades we derive the offspring size distribution
p(b), as shown in Fig. 5. The fat-tailed nature of offspring size
distribution implies the existence of a large group of users being
infected collectively. For instance, although the average offspring
size is 0.19, more than 106 users can be infected collectively.

C UNDERLYING SOCIAL NETWORK
We reconstruct the underlying social network from information
flow records, i.e., we establish an edge between two individuals
only if there exist spreading records between them. For instance,
only if there is a piece of information spreading from user i to user
j , j would be added to the possible offspring set of i . In this way, the
directed relationships between any two individuals are captured. In
total, we built offspring sets for all 101,802,707 users involved in our
empirical dataset. To characterize the connectivity of the network,
we measure the degree k , i.e., the number of offsprings, for each
individual. Figure 6 plots the degree distribution of the underlying
social network, showing that although the average degree is 0.6,
very large hubs (e.g., k > 107) exist, implying the fat-tailed nature
of the degree distribution.
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Figure 6: The degree distribution of the underlying social
network. The dashed line in the log-log plot has slope -2.0.
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