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Abstract
Learning dynamics on complex networks governed by dif-
ferential equation systems is crucial for understanding, pre-
dicting, and controlling complex systems in science and en-
gineering. However, this task is very challenging due to the
intrinsic complexities in the structures of the high dimensional
systems, their elusive continuous-time nonlinear dynamics,
and their structural-dynamic dependencies. To address these
challenges, we propose a differential deep learning model to
learn continuous-time dynamics on complex networks in a
data-driven way. We model differential equation systems by
graph neural networks. Instead of mapping through a discrete
number of hidden layers in the forward process, we solve
the initial value problem by integrating the neural differential
equation systems over time numerically. In the backward pro-
cess, we learn the optimal parameters by back-propagating
against the forward integration. We validate our model by
learning and predicting various real-world dynamics on dif-
ferent complex networks in both (continuous-time) network
dynamics learning setting and (regularly-sampled) structured
sequence learning setting, and then apply our model to graph
semi-supervised classification tasks (a one-snapshot case). The
promising experimental results demonstrate our model’s capa-
bility of jointly capturing the structure, dynamics, and seman-
tics of complex systems in a unified framework.

1 Introduction
Real-world complex systems, such as brain (Gerstner et al.
2014), ecological systems (Gao, Barzel, and Barabási 2016),
gene regulation (Alon 2006), human health (Bashan et al.
2016), and social networks (Zang et al. 2018), etc., are usu-
ally modeled as complex networks and their evolution are
governed by some underlying nonlinear dynamics (Newman,
Barabasi, and Watts 2011). Revealing such complex network
dynamics is crucial for understanding the complex systems in
nature. Effective analytical tools developed for this goal can
further help us predict and control these complex systems.

Although the theory of (nonlinear) dynamical systems has
been widely studied in different fields including applied math
(Strogatz 2018),statistical physics (Newman, Barabasi, and
Watts 2011), engineering (Slotine, Li, and others 1991), ecol-
ogy (Gao, Barzel, and Barabási 2016) and biology (Bashan
et al. 2016), these developed models are typically based on a
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clear knowledge of the network evolution mechanism which
are thus usually referred to as mechanistic models. Given the
complexity of the real world, there is still a large number of
complex networks whose underlying dynamics are unknown
yet (e.g., they can be too complex to be modeled by explicit
mathematical functions). At the same time, massive data are
usually generated during the evolution of these networks.
Therefore, modern data-driven approaches are promising and
highly demanding in learning the elusive dynamics on com-
plex networks.

The development of a successful data-driven approach
for modeling the dynamics on complex networks is very
challenging: the interaction structures of the nodes in the
network are complex and the number of nodes is large,
which is referred to as the high-dimensionality of the com-
plex systems; the rules governing the dynamic change of the
nodes’ states in complex networks are nonlinear, continuous-
time and elusive; the structural and dynamic dependencies
within the system are difficult to model. Recently, there is
an emerging trend in the data-driven discovery of ordinary
differential equations (ODEs) or partial differential equations
(PDEs), including sparse regression method (Kutz et al. 2017;
Mangan et al. 2016; Rudy et al. 2017), residual network
(Qin, Wu, and Xiu 2018), feedforward neural network (Raissi,
Perdikaris, and Karniadakis 2018), etc. However, these meth-
ods can only handle very small ODE systems or PDEs which
consist of only a few terms. Effective learning of the dy-
namics on large complex networks which consist of tens of
thousands of interactions is still largely unknown.

In this paper, we propose a differential deep learning ap-
proach to learn continuous-time dynamics on complex net-
works. We model (high-dimensional) differential equation
systems by graph neural networks to capture the instanta-
neous change of network dynamics. Instead of mapping
through a discrete number of layers in the forward process of
the conventional neural network models (LeCun, Bengio, and
Hinton 2015), we integrate the dynamics on graphs modeled
by a neural differential equation system over continuous time.
This is like a deep neural network with an infinite number of
layers (Chen et al. 2018). In a dynamical system view, the
continuous depth can be interpreted as continuous physical
time, and the outputs of a hidden layer at time t are instan-
taneous network dynamics at that moment. In the backward
learning process, we back-propagate the gradients of the su-



pervised information w.r.t. the learnable parameters against
the forward integration, leading to learning the differential
equation system in an end-to-end manner. Besides, we further
enhance our algorithm by learning the dynamics in a hidden
space learned from the original space of nodes’ states. We
name our model Neural Dynamics on Complex Networks
(NDCN).

We validate our approach by three general tasks: 1) (Net-
work dynamics learning): Can we learn the continuous-time
dynamics on complex networks? 2) (Structured sequence
learning): Can we predict the regularly-sampled structured
sequence? (Seo et al. 2018) 3) (One-snapshot learning): Can
we infer the semantic labels of nodes at the terminal time
moment? The experimental results show that our model can
accurately learn and predict the real-world dynamics on vari-
ous complex networks, in both continuous-time setting and
regularly-sampled sequence setting. What’s more, our model
learns the semantic labels of nodes in the setting of graph
semi-supervised learning (Kipf and Welling 2017) with very
competitive performance. Our framework potentially serves
as a unified framework to jointly capture the structure, dy-
namics, and semantics of complex systems in a data-driven
manner. Our codes and datasets are open-sourced (Refer to
Appendix A).

2 Related work
Dynamics of complex networks. Real-world complex sys-
tems are usually modeled as complex networks and driven by
nonlinear dynamics: the dynamics of brain and human micro-
bial are examined in (Gerstner et al. 2014) and (Bashan et al.
2016) respectively; (Gao, Barzel, and Barabási 2016) investi-
gated the resilience dynamics of complex systems. (Barzel,
Liu, and Barabási 2015) gave a pipeline to construct network
dynamics. To the best of our knowledge, our NDCN model
is the first neural network approach which learns continuous-
time dynamics on complex networks in a data-driven manner.

Data-driven discovery of dynamics. Recently, some
data-driven approaches are proposed to learn ODEs or PDEs,
including sparse regression (Kutz et al. 2017), residual net-
work (Qin, Wu, and Xiu 2018), feedforward neural network
(Raissi, Perdikaris, and Karniadakis 2018), coupled neural
networks (Raissi 2018) and so on. (Mangan et al. 2016) tries
to learn biological networks dynamics by sparse regression
over a large library, which is not scalable to systems with
more than 10 nodes. In all, none of them can learn the dynam-
ics on complex systems with more than hundreds of nodes
and tens of thousands of interactions.

Neural ODEs. Inspired by residual network (He et al.
2016) and ordinary differential equation (ODE) theory (Lu
et al. 2017; Ruthotto and Haber 2018), seminal work neural
ODE model (Chen et al. 2018) was proposed to re-write resid-
ual networks, normalizing flows, and recurrent neural net-
work in a dynamical system way. However, our NDCN model
deals with large and complex differential equations systems.
Besides, our model solves different problems, namely learn-
ing the dynamics on complex networks.

Optimal control. Relationships between back-
propagation in deep learning and optimal control
theory are investigated in (Han, Li, and others 2018;

Benning et al. 2019). We formulate our loss function by
leveraging the concept of running loss and terminal loss in
optimal control. We give novel constraints in optimal control
which is modeled by neural differential equations systems
on graphs. Our model solves novel tasks, e.g. learning the
dynamics on complex networks and refer to Sec.3.1.

Graph neural networks and temporal-GNNs. Graph
neural networks (GNNs) (Wu et al. 2019b), e.g., Graph
convolution network (GCN) (Kipf and Welling 2017),
attention-based GNN (AGNN) (Thekumparampil et al. 2018),
graph attention networks (GAT) (Veličković et al. 2017),
etc., achieved state-of-the-art performance on graph semi-
supervised learning tasks. However, existing GNNs usually
have 1 or 2 layers and can not go deep (Li, Han, and Wu 2018;
Wu et al. 2019b). Our NDCN gives a dynamical system view
on GNNs: the continuous depth can be interpreted as con-
tinuous physical time, and the outputs of a hidden layer at
time t are instantaneous network dynamics at that moment.
By capturing continuous-time network dynamics and their
transient behaviors, our model gives very competitive and
even better results than above GNNs.

By combining RNNs or convolution operators with GNNs,
temporal-GNNs (Yu, Yin, and Zhu 2017; Kazemi et al. 2019;
Narayan and Roe 2018; Seo et al. 2018) try to predict the
regularly-sampled structured sequences. However, these mod-
els can not be applied to continuous-time dynamics (observed
at arbitrary physical times with different time intervals). Our
NDCN not only predicts the continuous-time network dynam-
ics at an arbitrary time or semantic labels from one snapshot
but also predicts the structured sequences very well in a more
succinct way with much fewer parameters.

3 Preliminaries
3.1 Problem Definition
We first introduce a differential equation system which mod-
els the dynamics on complex networks:

dX(t)

dt
= f

(
X(t), G,W (t), t

)
, (1)

where X(t) ∈ Rn×d represents the state (node feature val-
ues) of a dynamic system consisting of n linked nodes at
time t ∈ [0,∞), and each node is characterized by d di-
mensional features. G = (V, E) is the network structure
capturing how the nodes are linked to each other. W (t) are
parameters which control how the system evolves over time.
X(0) = X0 is the initial states of this system at time t = 0.
The function f : Rn×d → Rn×d is a function governing
the dynamics of the system, which could be either linear
or nonlinear. In addition, nodes can have various semantic
labels Y (X,Θ, t) ∈ {0, 1}n×k at time t, and Θ represents
the parameters of this classification function. The problems
we are trying to solve in this paper are:
• (Network dynamics learning) How to learn the

continuous-time dynamics dX(t)
dt on complex net-

works from empirical data? Mathematically, given a
graph G and the observations of the states of system
{ ˆX(t1), ˆX(t2), ..., ˆX(tT )|0 ≤ t1 < ... < tT }, and t1
to tT are arbitrary physical time stamps, can we learn



differential equation systems dX(t)
dt = f(X,G,W, t) to

generate or predict continuous-time dynamics X(t) at ar-
bitrary physical time t? The arbitrary physical time means
that {t1, ..., tT } are possibly irregularly sampled with dif-
ferent observational time intervals. When t > tT , we
call the task extrapolation prediction, while t < tT and
t 6= {t1, ..., tT } for interpolation prediction.

• (Structured sequence learning). As a special case when
t1, t2, ..., tT are sampled regularly with equal time inter-
vals, the above problem degenerates to a structured se-
quence learning task with an emphasis on sequential order
instead of arbitrary physical time. The goal is to extrapolate
next m steps’ X[tT + 1], ..., X[tT +m] .

• (One-snapshot learning) How to learn the semantic la-
bels of Y (X(tT )) at the moment t = tT for each node?
As a special case of above problem with an emphasis on a
specific moment and without loss of generality, we focus
on the moment at the terminal time tT . The function Y
can be a mapping from the nodes’ states (e.g. humidity) to
their labels (e.g. taking umbrella or not).

3.2 Network Dynamics
We investigate the following three real-world network dy-
namics. Let

−−→
xi(t) ∈ Rd×1 be d dimensional features of node

i at time t and thus X(t) = [. . . ,
−−→
xi(t), . . . ]

T ∈ Rn×d. We
show their differential equation systems in vector form for
clarity and implement them in matrix form:

• The heat diffusion dynamics d
−−−→
xi(t)
dt =

−ki,j
∑n
j=1Ai,j(

−→xi − −→xj) governed by Newton’s
law of cooling (Luikov 2012), which states that the rate
of heat change of node i is proportional to the difference
of the temperature between node i and its neighbors with
heat capacity matrix A.

• The mutualistic interaction dynamics among species in

ecology, governed by equation d
−−−→
xi(t)
dt = bi + −→xi(1 −

−→xi

ki
)(
−→xi

ci
− 1) +

∑n
j=1Ai,j

−→xi
−→xj

di+ei
−→xi+hj

−→xj
(For brevity, the

operations between vectors are element-wise). The mu-
tualistic differential equation systems (Gao, Barzel, and
Barabási 2016) capture the abundance ~xi(t) of species i,
consisting of incoming migration term bi, logistic growth
with population capacity ki (Zang et al. 2018) and Allee
effect (Allee et al. 1949) with cold-start threshold ci, and
mutualistic interaction term with interaction network A.

• The gene regulatory dynamics governed by Michaelis-

Menten equation d
−−−→
xi(t)
dt = −bi−→xif +

∑n
j=1Ai,j

−→xj
h

−→xj
h+1

where the first term models degradation when f = 1 or
dimerization when f = 2, and the second term captures
genetic activation tuned by the Hill coefficient h (Alon
2006; Gao, Barzel, and Barabási 2016).

Complex Networks. We consider following networks: (a)
Grid network, where each node is connected with 8 neigh-
bors (as shown in Fig. 2(a)) ; (b) Random network, gen-
erated by Erdós and Rényi model (Erdos and Renyi 1959)
(as shown in Fig. 2(b)); (c) Power-law network, generated
by Albert-Barabási model (Barabási and Albert 1999) (as

shown in Fig. 2(c)); (d) Small-world network, generated by
Watts-Strogatz model (Watts and Strogatz 1998) (as shown in
Fig. 2(d)); and (e) Community network, generated by random
partition model (Fortunato 2010) (as shown in Fig. 2(e)).

Visualization. To visualize dynamics on complex networks
over time is not trivial. We first generate a network with n
nodes by aforementioned network models. The nodes are
re-ordered according to the community detection method
by Newman (Newman 2010) and each node has a unique
label from 1 to n. We layout these nodes on a 2-dimensional√
n ×
√
n grid and each grid point (r, c) ∈ N2 represents

the ith node where i = r
√
n + c + 1. Thus, nodes’ states

X(t) ∈ Rn×d at time t when d = 1 can be visualized as
a scalar field function X : N2 → R over the grid. Please
refer to Appendix B for the animations of these dynamics on
different complex networks over time.

4 General framework
We formulate our general framework as follows:

argmin
W (t),Θ(T )

L =

∫ T

0

R
(
X(t), G,W, t

)
dt+ S

(
Y (X(T ),Θ)

)
subject to

dX(t)

dt
= f

(
X(t), G,W, t

)
, X0

(2)

whereR(X(t), G,W, t) is the running loss of the dynamics
on graph at time t, and S(Y (X(T ),Θ)) is the terminal se-
mantic loss at time T . By integrating dX

dt = f(X,G,W, t)
over time t from initial state X0, a.k.a. solving the initial
value problem (Boyce, DiPrima, and Meade 1992) for this
differential equation system, we can get the continuous-time
dynamics X(t) = X(0) +

∫ T
0
f(X(τ), G,W, τ) dτ at arbi-

trary time moment t > 0.
Such a formulation can be seen as an optimal con-

trol problem so that the goal becomes to obtain the best
control parameters W (t) for differential equation system
dX
dt = f(X,G,W, t) and the best classification parameters

Θ for semantic function Y (X(t),Θ) by solving above op-
timization problem. Different from traditional optimal con-
trol framework, we model the differential equation systems
dX
dt = f(X,G,W, t) by graph neural networks. By inte-

grating dX
dt = f(X,G,W, t) over continuous time, namely

X(t) = X(0) +
∫ t

0
f
(
X(τ), G,W, τ

)
dτ , we get our dif-

ferential deep learning models. In a dynamical system view,
our differential deep learning models can be a time-varying
coefficient dynamical system when W (t) changes over time;
or a constant coefficient dynamical system when W is con-
stant over time for parameter sharing. It’s worthwhile to
recall that the deep learning methods with L hidden neu-
ral layers f∗ are X[L] = fL ◦ ... ◦ f2 ◦ f1(X[0]), which
are iterated maps (Strogatz 2018) with an integer number
of discrete layers and thus can not learn continuous-time
dynamics X(t) at arbitrary time. In contrast, our model
X(t) = X(0) +

∫ t
0
f
(
X(τ), G,W, τ

)
dτ can have con-

tinuous layers with a real number t depth corresponding to
continuous-time dynamics.

Moreover, to further increase the express ability of our
model, we can encode the network signal X(t) from the orig-
inal space to Xh(t) in hidden space (usually with a different



number of dimensions), and learn the dynamics in such a
space. Then our model becomes:

argmin
W (t),Θ(T )

L =

∫ T

0

R
(
X(t), G,W, t

)
dt+ S

(
Y (X(T ),Θ)

)
subject to Xh(t) = fe

(
X(t)

)
dXh(t)

dt
= f

(
Xh(t), G,W, t

)
, Xh(0)

X(t) = fd

(
Xh(t)

)
(3)

where the first constraint transforms X(t) into hidden space
Xh(t) through encoding function fe. The second constraint
is the governing dynamics in the hidden space. The third
constraint decodes the hidden signal back to the original
space with decoding function fd. The design of fe, f , and fd
are flexible to be any neural structure (e.g. fd is a softmax
function for classification). We denote our model as Neural
Dynamics on Complex Networks (NDCN).

We solve the initial value problem (i.e., integrating the
differential equation systems over time numerically) by nu-
merical methods (e.g., 1st-order Euler method, high-order
method Dormand-Prince DOPRI5 (Dormand 1996), etc.).
The numerical methods can approximate continuous-time
dynamics X(t) = X(0) +

∫ t
0
f
(
X(τ), G,W, τ

)
dτ at ar-

bitrary time t accurately with guaranteed error. In order to
learn the learnable parameters W , we back-propagate the
gradients of the loss function w.r.t the control parameters
∂L
∂W over the numerical integration process backwards in an
end-to-end manner, and solve the optimization problem by
stochastic gradient descent methods (e.g., Adam (Kingma
and Ba 2015)). We will show some concrete examples of the
above framework in the next three sections.

5 Learning continuous-time network
dynamics

In this section, we investigate if our NDCN model can learn
aforementioned network dynamics in the continuous-time
setting for both interpolation prediction and extrapolation
prediction. The continuous-time setting means that the ob-
servational times t1 to tT of the observed states of sys-
tem { ˆX(t1), ˆX(t2), ..., ˆX(tT )} are arbitrary physical time
stamps which are irregularly sampled with different observa-
tional time intervals. The extrapolation prediction is to predict
X(t) at arbitrary physical time moment t when t > tT , while
the interpolation prediction is to predict X(t) when t < tT
and t 6= {t1, ..., tT }.

5.1 A Model Instance
We solve the objective function in (3) with an emphasis on
running loss only. Without the loss of generality, we use
`1-norm loss as the running loss R. More concretely, we
adopt two fully connected neural layers with a nonlinear
hidden layer as the encoding function fe, a graph convolution
neural network (GCN) like structure (Kipf and Welling 2017)
but with a different graph diffusion operator Φ to model
the instantaneous network dynamics in the hidden space,
and a linear decoding function fd for regression tasks in the
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Figure 1: Illustration of an NDCN instance. a) Residual
Graph Neural Networks, b) ODE-GNN model and c) Our
Neural Dynamics on Complex Network (NDCN) model. The
integer l represents the discrete lth layer and the real number
t represents continuous physical time.
original signal space. Thus, our model is (see neural structure
in Figure 1c) :

argmin
W∗,b∗

L =

∫ T

0

|X(t)− ˆX(t)| dt

subject to Xh(t) = tanh
(
X(t)We + be

)
W0 + b0

dXh(t)

dt
= ReLU

(
ΦXh(t)W + b

)
, Xh(0)

X(t) = Xh(t)Wd + bd

(4)

where ˆX(t) ∈ Rn×d is the supervised dynamic information
available at time stamp t (in the semi-supervised case the
missing information can be padded by 0). The |·| denotes `1-
norm loss (mean element-wise absolute value difference) be-
tween X(t) and ˆX(t) at time t ∈ [0, T ]. We adopt diffusion
operator Φ = D−

1
2 (D −A)D−

1
2 ∈ Rn×n which is the nor-

malized graph Laplacian where A ∈ Rn×n is the adjacency
matrix of the network and D ∈ Rn×n is the corresponding
node degree matrix. The W ∈ Rde×de and b ∈ Rn×de are
shared parameters (namely, the weights and bias of a linear
connection layer) over time t ∈ [0, T ]. The We ∈ Rd×de and
W0 ∈ Rde×de are the matrices in linear layers for encoding,
while Wd ∈ Rde×d are for decoding. The be, b0, b, bd are the
biases at the corresponding layer. We lean the parameters
We,W0,W,Wd, be, b0, b, bd from empirical data so that we
can learn X in a data-driven manner.

We design the neural differential equation system as
dX(t)
dt = ReLU(ΦX(t)W + b) to learn any unknown net-

work dynamics. We can regard dX(t)
dt as a single neural

layer at time moment t. The X(t) at arbitrary time t is
achieved by integrating dX(t)

dt over time, i.e., X(t) = X(0)+∫ t
0

ReLU
(

ΦX(τ)W + b
)
dτ , leading to a continuous-time

deep neural network.

5.2 Experiments
Baselines. To the best of our knowledge, there are no base-
lines for learning continuous-time dynamics on complex net-
works, and thus we compare the ablation models of NDCN
for this task. By investigating ablation models we show that
our NDCN is a minimum model for this task. We keep the
loss function the same and construct the following baselines:
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Figure 2: Heat diffusion on different networks. Each of the
five vertical panels represents the dynamics on one network
over physical time. For each network dynamics, we illustrate
the sampled ground truth dynamics (left) and the dynamics
generated by our NDCN (right) from top to bottom following
the direction of time.

• The model without encoding fe and fd and thus no hid-
den space: dX(t)

dt = ReLU(ΦX(t)W + b) , namely ODE-
GNN, which learns the dynamics in the original signal
space X(t) as shown in Fig. 1b;

• The model without graph diffusion operator Φ: dXh(t)
dt =

ReLU(Xh(t)W +b), i.e., an ODE Neural Network, which
can be thought as a continuous-time version of forward
residual neural network (See Fig. 1a and Fig. 1b for the
difference between residual network and ODE network).

• The model without control parameters W : dXh(t)
dt =

ReLU(ΦXh(t)) which has no linear connection layer be-
tween t and t+ dt (where dt→ 0) and thus indicating a
determined dynamics to spread signals.

Experimental setup. We generate underlying networks
with 400 nodes by network models in Sec.3.2 and the il-
lustrations are shown in Fig. 2,3 and 4. We set the initial
value X(0) the same for all the experiments and thus differ-
ent dynamics are only due to their different dynamic rules
and underlying networks (See Appendix B).

We irregularly sample 120 snapshots of the continuous-
time dynamics { ˆX(t1), ..., ˆX(t120)|0 ≤ t1 < ... < t120 ≤
T} where the time intervals between t1, ..., t120 are different.
We randomly choose 80 snapshots from ˆX(t1) to ˆX(t100)

for training, the left 20 snapshots from ˆX(t1) to ˆX(t100) for
testing the interpolation prediction task. We use the 20 snap-
shots from ˆX(t101) to ˆX(t120) for testing the extrapolation
prediction task.

We use Dormand-Prince method (Dormand 1996) to get
the ground truth dynamics, and use Euler method in the
forward process of our NDCN (More configurations in Ap-
pendix C). We evaluate the results by `1 loss and normalized
`1 loss (normalized by the mean element-wise value of ˆX(t)),
and they lead to the same conclusion (We report normalized
`1 loss here and see Appendix E for `1 loss). Results are the
mean and standard deviation of the loss over 20 independent
runs for 3 dynamic laws on 5 different networks by each
method.
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Figure 3: Biological mutualistic interaction on different net-
works.
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Figure 4: Gene regulation dynamics on different networks.

Results We visualize the ground-truth and learned dynam-
ics in Fig. 2,3 and 4, and please see the animations of these
network dynamics in Appendix B. We find that one dynamic
law may behave quite different on different networks: heat dy-
namics may gradually die out to be stable but follow different
dynamic patterns in Fig. 2. Gene dynamics are asymptotically
stable on grid in Fig. 4a but unstable on random networks
in Fig. 4b or community networks in Fig. 4e. Both gene
regulation dynamics in Fig. 4c and biological mutualistic
dynamics in Fig. 3c show very bursty patterns on power-law
networks. However, visually speaking, our NDCN learns all
these different network dynamics very well.

The quantitative results of extrapolation and interpolation
prediction are summarized in Table 1 and Table 2 respectively.
We observe that our NDCN captures different dynamics on
various complex networks accurately and outperforms all
the continuous-time baselines by a large margin, indicating
that our NDCN potentially serves as a minimum model in
learning continuous-time dynamics on complex networks.

6 Learning Regularly-sampled Dynamics
What’s more, our model also captures dynamics from
regularly-sampled network dynamics (i.e. the structured se-
quence learning setting) very well.

Baselines. We compare our model with the temporal-GNN
models which are usually combinations of RNN models and
GNN models (Kazemi et al. 2019; Narayan and Roe 2018;
Seo et al. 2018). We use GCN (Kipf and Welling 2017) as a
graph structure extractor and use LSTM/GRU/RNN (Lipton,



Table 1: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network dynamics ac-
curately. Each result is the normalized `1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 29.9± 7.3 27.8± 5.1 24.9± 5.2 24.8± 3.2 30.2± 4.4
No-Graph 30.5± 1.7 5.8± 1.3 6.8± 0.5 10.7± 0.6 24.3± 3.0
No-Control 73.4± 14.4 28.2± 4.0 25.2± 4.3 30.8± 4.7 37.1± 3.7
NDCN 4.1± 1.2 4.3± 1.6 4.9± 0.5 2.5± 0.4 4.8± 1.0

Mutualistic
Interaction

No-Encode 45.3± 3.7 9.1± 2.9 29.9± 8.8 54.5± 3.6 14.5± 5.0
No-Graph 56.4± 1.1 6.7± 2.8 14.8± 6.3 54.5± 1.0 9.5± 1.5
No-Control 140.7± 13.0 10.8± 4.3 106.2± 42.6 115.8± 12.9 16.9± 3.1
NDCN 26.7± 4.7 3.8± 1.8 7.4± 2.6 14.4± 3.3 3.6± 1.5

Gene
Regulation

No-Encode 31.7± 14.1 17.5± 13.0 33.7± 9.9 25.5± 7.0 26.3± 10.4
No-Graph 13.3± 0.9 12.2± 0.2 43.7± 0.3 15.4± 0.3 19.6± 0.5
No-Control 65.2± 14.2 68.2± 6.6 70.3± 7.7 58.6± 17.4 64.2± 7.0
NDCN 16.0± 7.2 1.8± 0.5 3.6± 0.9 4.3± 0.9 2.5± 0.6

Table 2: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network dynamics accu-
rately. Each result is the normalized `1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 32.0± 12.7 26.7± 4.4 25.7± 3.8 27.9± 7.3 35.0± 6.3
No-Graph 41.9± 1.8 9.4± 0.6 18.2± 1.5 25.0± 2.1 25.0± 1.4
No-Control 56.8± 2.8 32.2± 7.0 33.5± 5.7 40.4± 3.4 39.1± 4.5
NDCN 3.2± 0.6 3.2± 0.4 5.6± 0.6 3.4± 0.4 4.3± 0.5

Mutualistic
Interaction

No-Encode 28.9± 2.0 19.9± 6.5 34.5± 13.4 27.6± 2.6 25.5± 8.7
No-Graph 28.7± 4.5 7.8± 2.4 23.2± 4.2 26.9± 3.8 14.1± 2.4
No-Control 72.2± 4.1 22.5± 10.2 63.8± 3.9 67.9± 2.9 33.9± 12.3
NDCN 7.6± 1.1 6.6± 2.4 6.5± 1.3 4.7± 0.7 7.9± 2.9

Gene
Regulation

No-Encode 39.2± 13.0 14.5± 12.4 33.6± 10.1 27.7± 9.4 21.2± 10.4
No-Graph 25.2± 2.3 11.9± 0.2 39.4± 1.3 15.7± 0.7 18.9± 0.3
No-Control 66.9± 8.8 31.7± 5.2 40.3± 6.6 49.0± 8.0 35.5± 5.3
NDCN 5.8± 1.0 1.5± 0.6 2.9± 0.5 4.2± 0.9 2.3± 0.6

Berkowitz, and Elkan 2015) to learn the temporal relation-
ships between ordered structured sequences. We keep the
loss function the same and construct the following baselines.
We denote each recurrent cell as LSTM/GRU/RNN and refer
to Appendix D for the detailed equations.
• LSTM-GNN: the temporal-GNN with LSTM cell X[t +

1] = LSTM(GCN(X[t], G)).
• GRU-GNN: the temporal-GNN with GRU cell X[t+ 1] =
GRU(GCN(X[t], G)).

• RNN-GNN: the temporal-GNN with RNN cell X[t+1] =
RNN(GCN(X[t], G)).

Experimental setup. We regularly sample 100
snapshots of the continuous-time network dynamics
{ ˆX[t1], ..., ˆX[t100]|0 ≤ t1 < ... < t120 ≤ T} where the
time intervals between t1, ..., t100 are the same. We use
first 80 snapshots ˆX[t1], ..., ˆX[t80] for training and the left
20 snapshots ˆX[t81], ..., ˆX[t100] for testing extrapolation
prediction task. The temporal-GNN models are usually
used for next few step prediction and can not be used for
the interpolation task (say, to predict X[t1.23]) directly.
We use 5 and 10 for hidden dimension of GCN and RNN
models respectively. Other settings are the same as previous
continuous-time dynamics experiment.

Results We summarize the results of the extrapolation pre-
diction of regularly-sampled dynamics in Table 3. The GRU-
GNN model works well in mutualistic dynamics on random
network and community network. Our NDCN predicts differ-
ent dynamics on these complex networks accurately and out-
performs the baselines in almost all the settings. What’s more,
our model capture the structure and dynamics in a much more
succinct way. The learnable parameters of our NDCN , RNN-
GNN, GRU-GNN, LSTM-GNN are 901, 24530, 64770, and

84890 respectively.

7 Learning semantic labels at terminal time
We investigate the third question, i.e., how to learn the se-
mantic labels of each node at the terminal time? Various
graph neural networks (GNN) (Wu et al. 2019b) achieve
the state-of-the-art performance in graph semi-supervised
classification task (Yang, Cohen, and Salakhutdinov 2016;
Kipf and Welling 2017). Existing GNNs usually adopt 1 or 2
hidden layers (Kipf and Welling 2017; Veličković et al. 2017)
and cannot go deep (Li, Han, and Wu 2018). Our framework
follows the perspective of a dynamical system, and goes be-
yond an integer number L of hidden layers in GNNs to a real
number depth t of hidden layers, implying continuous-time
dynamics on the graph. By integrating continuous-time dy-
namics on the graph over time, we get a more fine-grained
forward process and thus our NDCN model shows very com-
petitive even better results compared with state-of-the-art
GNN models which may have sophisticated parameters (e.g.
attention).

7.1 A Model Instance
Following the same framework as in Section 3, we propose
a simple model with the terminal semantic loss S(Y (T ))
modeled by the cross-entropy loss for classification task:

argmin
We,be,Wd,bd

L =

∫ T

0

R(t) dt−
n∑

i=1

c∑
k=1

Ŷi,k(T ) log Yi,k(T )

subject to Xh(0) = tanh
(
X(0)We + be

)
dXh(t)

dt
= ReLU

(
ΦXh(t)

)
Y (T ) = softmax(Xh(T )Wd + bd)

(5)

where Y (T ) ∈ Rn×c is the label distributions of nodes at
time T ∈ R whose element Yi,k(T ) denotes the probability



Table 3: Regularly-sampled Extrapolation Prediction. Our NDCN predicts different structured sequences accurately. Each
result is the normalized `1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each
method.

Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 12.8± 2.1 21.6± 7.7 12.4± 5.1 11.6± 2.2 13.5± 4.2
GRU-GNN 11.2± 2.2 9.1± 2.3 8.8± 1.3 9.3± 1.7 7.9± 0.8
RNN-GNN 18.8± 5.9 25.0± 5.6 18.9± 6.5 21.8± 3.8 16.1± 0.0
NDCN 4.3± 0.7 4.7± 1.7 5.4± 0.4 2.7± 0.4 5.3± 0.7

Mutualistic
Interaction

LSTM-GNN 51.4± 3.3 24.2± 24.2 27.0± 7.1 58.2± 2.4 25.0± 22.3
GRU-GNN 49.8± 4.1 1.0± 3.6 12.2± 0.8 51.1± 4.7 3.7± 4.0
RNN-GNN 56.6± 0.1 8.4± 11.3 12.0± 0.4 57.4± 1.9 8.2± 6.4
NDCN 29.8± 1.6 4.7± 1.1 11.2± 5.0 15.9± 2.2 3.8± 0.9

Gene
Regulation

LSTM-GNN 27.7± 3.2 67.3± 14.2 38.8± 12.7 13.1± 2.0 53.1± 16.4
GRU-GNN 24.2± 2.8 50.9± 6.4 35.1± 15.1 11.1± 1.8 46.2± 7.6
RNN-GNN 28.0± 6.8 56.5± 5.7 42.0± 12.8 14.0± 5.3 46.5± 3.5
NDCN 18.6± 9.9 2.4± 0.9 4.1± 1.4 5.5± 0.8 2.9± 0.5

of the node i = 1, . . . , n with label k = 1, . . . , c at time T .
The Ŷ ∈ Rn×c is the supervised information (again missing
information can be padded by 0) observed at time t = T .
We use differential equation system dX(t)

dt = ReLU(ΦX(t))
to spread the graph signals over continuous time [0, T ], i.e.,
Xh(T ) = Xh(0) +

∫ T
0

ReLU
(

ΦXh(t)
)
dt.

Compared with the model in Eq.4, we only have su-
pervised information from one snapshot at time t = T .
Thus, we model the running loss

∫ T
0
R(t) dt as the `2-

norm regularizer of the learnable parameters
∫ T

0
R(t) dt =

λ(|We|22 + |be|22 + |Wd|22 + |bd|22) to avoid over-fitting. We
adopt the diffusion operator Φ = D̃−

1
2 (αI+(1−α)A)D̃−

1
2

where A is the adjacency matrix, D is the degree matrix
and D̃ = αI + (1 − α)D keeps Φ normalized. The pa-
rameter α ∈ [0, 1] tunes nodes’ adherence to their previ-
ous information or their neighbors’ collective opinion. We
use it as a hyper-parameter here for simplicity and we can
make it as a learnable parameter later. The differential equa-
tion system dX

dt = ΦX follows the dynamics of averaging

the neighborhood opinion as d
−−−→
xi(t)
dt = α

(1−α)di+α

−−→
xi(t) +∑n

j Ai,j
1−α√

(1−α)di+α
√

(1−α)dj+α

−−−→
xj(t) for node i. When

α = 0, Φ averages the neighbors as normalized random
walk, when α = 1, Φ captures exponential dynamics with-
out network effects, and when α = 0.5, Φ averages both
neighbors and itself as in (Kipf and Welling 2017).

7.2 Experiments
We validate our model in the graph semi-supervised classifi-
cation setting. For the consistency of comparison with prior
works, we follow the same experimental setup as (Kipf and
Welling 2017; Veličković et al. 2017; Thekumparampil et
al. 2018). Refer to Appendix F for the detailed information
about datasets, baselines, and their configurations.

Results We summarize the results in Table 4. We find our
NDCN outperforms many state-of-the-art GNN models. Re-
sults for the baselines are taken from (Kipf and Welling 2017;
Veličković et al. 2017; Thekumparampil et al. 2018; Wu et
al. 2019a). We report the mean and standard deviation of our
results for 100 runs. We get our reported results in Table 4
when terminal time T = 1.2 , α = 0 for the Cora dataset,
T = 1.0, α = 0.8 for the Citeseer dataset, and T = 1.1,
α = 0.4 for the Pubmed dataset.

Table 4: Test mean accuracy with standard deviation in per-
centage (%) over 100 runs. Our NDCN model gives very
competitive results compared with many GNN models.

Model Cora Citeseer Pubmed

GCN 81.5 70.3 79.0

AGNN 83.1± 0.1 71.7± 0.1 79.9± 0.1

GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3

NDCN 83.3± 0.6 73.1± 0.6 79.8± 0.4
(a) (b) (c)

Figure 5: Our NDCN model captures continuous-time dynam-
ics. Mean classification accuracy of 100 runs over terminal
time when given a specific α. Insets are the accuracy over the
two-dimensional space of terminal time and α

By capturing the continuous-time network dynamics to
diffuse network signals, our NDCN gives better classifica-
tion accuracy at terminal time T ∈ R+. Figure 5 plots the
mean accuracy with error bars over terminal time T in the
abovementioned α settings (we further plot the accuracy over
terminal time T and α in the insets and Appendix G). We find
for all the three datasets their accuracy curves follow rise and
fall patterns around the best terminal time. Indeed, when the
terminal time T is too small or too large, the accuracy degen-
erates because the features of nodes are in under-diffusion
or over-diffusion states, implying the necessity in capturing
continuous-time dynamics. In contrast, previous GNNs can
only have an discrete number of layers which can not capture
the continuous-time network dynamics accurately.

8 Conclusion
We propose a differential deep learning model to learn
continuous-time dynamics on complex networks. We model
differential equations systems by graph neural networks
and integrate the neural differential equations systems over
time. By capturing the continuous-time network dynamics,
our NDCN gives the meanings of physical time and the
continuous-time network dynamics to the depth and hidden
outputs respectively, learns real-world dynamics on complex
network accurately in both (irregularly-sampled) continuous-
time setting and (regularly-sampled) structured sequence set-
ting, and outperforms many GNN models in the graph semi-
supervised classification task (a one-snapshot case). Codes
and datasets are open-sourced (See Appendix A).
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A Reproducibility
To ensure the reproducibility, we open-sourced our datasets
and Pytorch implementation empowered by GPU and sparse
matrix at:

https://drive.google.com/open?id=
19x7uas9G5w0gU8bHDoohJmDrVOt9wl8W

B Animations of the real-world dynamics on
different networks

Please view the animations of the three real-world dynamics
on five different networks learned by different models at:

https://drive.google.com/open?id=
1KBl-6Oh7BRxcQNQrPeHuKPPI6lndDa5Y

We will find our NDCN captures the real-world dynamics on
different networks very accurately while the baselines can
not. The detailed experimental configurations are shown as
follows:

B.1 Underlying Networks
We generate various networks by as follows, and we visualize
their adjacency matrix after re-ordering their nodes by the
community detection method by Newman (Newman 2010).
• Grid network:
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Figure 6: Adjacency matrix of grid network taking on a cir-
culant matrix.

• Random network:

i m p o r t ne tworkx as nx
n = 400
G = nx . e r d o s r e n y i g r a p h
( n , 0 . 1 , s eed = seed )

• Power-law network:

n = 400
G = nx . b a r a b a s i a l b e r t g r a p h
( n , 5 , s eed = seed )
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Figure 7: Adjacency matrix of random network.
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Figure 8: Adjacency matrix of power-law network.

• Small-world network:

n = 400
G = nx . n e w m a n w a t t s s t r o g a t z g r a p h
( 4 0 0 , 5 , 0 . 5 , s eed = seed )

• Community network:

n1 = i n t ( n / 3 )
n2 = i n t ( n / 3 )
n3 = i n t ( n / 4 )
n4 = n − n1 − n2 −n3
G = nx . r a n d o m p a r t i t i o n g r a p h
( [ n1 , n2 , n3 , n4 ] , . 2 5 , . 0 1 , s eed = seed )

B.2 Initial Values of Network Dynamics
We set the initial valueX(0) the same for all the experimental
settings and thus different dynamics are only due to their
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Figure 9: Adjacency matrix of small-world network.
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Figure 10: Adjacency matrix of community network.

different dynamic rules and underlying networks modelled
by Ẋ = f(X,G,W, t) as shown in Fig. 2,3 and 4. Please see
above animations to check out different network dynamics.

n = 400
N = i n t ( np . c e i l ( np . s q r t ( n ) ) )
x0 = t o r c h . z e r o s (N, N)
x0 [ i n t ( 0 . 0 5∗N ) : i n t ( 0 . 2 5∗N) ,

i n t ( 0 . 0 5∗N ) : i n t ( 0 . 2 5∗N) ] = 25
# x0 [ 1 : 5 , 1 : 5 ] = 25
f o r N = 20 or n= 400 c a s e
x0 [ i n t ( 0 . 4 5∗N ) : i n t ( 0 . 7 5∗N) ,

i n t ( 0 . 4 5∗N ) : i n t ( 0 . 7 5∗N) ] = 20
# x0 [ 9 : 1 5 , 9 : 1 5 ] = 20 f o r N = 20 or n= 400 c a s e
x0 [ i n t ( 0 . 0 5∗N ) : i n t ( 0 . 2 5∗N) ,

i n t ( 0 . 3 5∗N ) : i n t ( 0 . 6 5∗N) ] = 17
# x0 [ 1 : 5 , 7 : 1 3 ] = 17 f o r N = 20 or n= 400 c a s e

B.3 Network Dynamics
We adopt the following three real-world dynamics from different
disciplines. Please see above animations to check out the visual-
ization of different network dynamics. The differential equation
systems are shown as follows:
• The heat diffusion dynamics governed by Newton’s law of cool-

ing (Luikov 2012),

d
−−→
xi(t)

dt
= −ki,j

∑n

j=1
Ai,j(

−→xi −−→xj) (6)

states that the rate of heat change of node i is proportional to the
difference in the temperatures between i and its neighbors with
heat capacity matrix A. We use k = 1 here.

• The mutualistic interaction dynamics among species in ecology,
governed by equation

d
−−→
xi(t)

dt
= bi +−→xi(1−

−→xi
ki

)(
−→xi
ci
− 1) +

n∑
j=1

Ai,j
−→xi−→xj

di + ei
−→xi + hj

−→xj
.

(7)
The mutualistic differential equation systems (Gao, Barzel, and

Barabási 2016) capture the abundance ~xi(t) of species i, consist-
ing of incoming migration term bi, logistic growth with popu-
lation capacity ki (Zang et al. 2018) and Allee effect (Allee et
al. 1949) with cold-start threshold ci, and mutualistic interaction
term with interaction network A. We use b = 0.1, k = 5.0,
c = 1.0, d = 5.0, e = 0.9, h = 0.1 here.

• The gene regulatory dynamics governed by Michaelis-Menten
equation

d
−−→
xi(t)

dt
= −bi ~xif +

∑n

j=1
Ai,j

−→xjh
−→xjh + 1

(8)

where the first term models degradation when f = 1 or dimeriza-
tion when f = 2, and the second term captures genetic activation
tuned by the Hill coefficient h (Gao, Barzel, and Barabási 2016).
We adopt b = 1.0, f = 1.0, h = 2.0 here.

B.4 Terminal Time:
We use T = 5 for mutualistic dynamics and gene regulatory dynam-
ics over different networks, and T = 5, 0.1, 0.75, 2, 0.2 for heat
dynamics on the grid, random graph, power-law network, small-
world network, and community network respectively due to their
different time scale of network dynamics. Please see above anima-
tions to check out different network dynamics.

B.5 Visualizations of network dynamics
Please see above animations to check out the visualization of differ-
ent network dynamics. We generate networks by aforementioned
network models with n = 400 nodes. The nodes are re-ordered
according to community detection method by Newman (Newman
2010). We visualize their adjacency matrices in Fig. 11,12 and 13.
We layout these networks in a grid and thus nodes’ states X(t)
are visualized as functions on the grid. Specifically, the nodes are
re-ordered according to community detection method by Newman
(Newman 2010) and each node has a unique label from 1 to n. We
layout these nodes on a 2-dimensional

√
n×
√
n grid and each grid

point (r, c) ∈ N2 represents the ith node where i = r
√
n+ c+ 1.

Thus, nodes’ states X(t) ∈ Rn×d when d = 1 can be visualized as
a scalar field function X : N2 → R over the grid.
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Figure 11: Heat diffusion on different networks. Each of the five vertical panels represents the dynamics on one network over
physical time. For each network dynamics, we illustrate the sampled ground truth dynamics (left) and the dynamics generated by
our NDCN (right) from top to bottom following the direction of time.

C Model configurations of Learning Network
Dynamics in both continuous-time and

regularly-sampled settings
We train our NDCN model by Adam (Kingma and Ba 2015). We
choose 20 as the hidden dimension of Xh ∈ Rn×20. We train our
model for a maximum of 2000 epochs using Adam (Kingma and
Ba 2015) with learning rate 0.01. We summarize our `2 regular-
ization parameter as in Table 5 and Table 6 for Section 5 learning
continuous-time network dynamics. We summarize our `2 regular-
ization parameter as in Table 7 for Section 6 learning regularly-
sampled dynamics.

D Temporal-GNN models
We use following temporal-GNN models for structured sequence
learning:
• LSTM-GNN: the temporal-GNN with LSTM cell: X[t+ 1] =
LSTM(GCN(X[t], G)):

xt = ReLU(Φ ∗ (We ∗X[t] + be))

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ∗ ct−1 + it ∗ gt
ht = ot ∗ tanh(ct)

ˆX[t+ 1] = Wd ∗ ht + bd

(9)

• GRU-GNN: the temporal-GNN with GRU cell: X[t + 1] =

GRU(GCN(X[t], G)):
xt = ReLU(Φ ∗ (We ∗X[t] + be))

rt = σ(Wirxt + bir +Whrht−1 + bhr)

zt = σ(Wizxt + biz +Whzht−1 + bhz)

nt = tanh(Winxt + bin + r ∗ (Whnht−1 + bhn))

ht = (1− zt) ∗ nt + zt ∗ ht−1

ˆX[t+ 1] = Wd ∗ ht + bd
(10)

• RNN-GNN: the temporal-GNN with RNN cell: X[t + 1] =
RNN(GCN(X[t], G)):

xt = ReLU(Φ ∗ (We ∗X[t] + be))

ht = tanh(wihxt + bih + whhht−1 + bhh)

ˆX[t+ 1] = Wd ∗ ht + bd

(11)

We adopt the diffusion operator Φ = D̃−
1
2 (αI + (1− α)A)D̃−

1
2

where A is the adjacency matrix, D is the degree matrix and
D̃ = αI + (1 − α)D keeps Φ normalized. The differential
equation system dX

dt
= ΦX follows the dynamics of averag-

ing the neighborhood opinion as d
−−−→
xi(t)
dt

= α
(1−α)di+α

−−→
xi(t) +∑n

j Ai,j
1−α√

(1−α)di+α
√

(1−α)dj+α

−−−→
xj(t) for node i. When α = 0,

Φ averages the neighbors as normalized random walk, when α = 1,
Φ captures exponential dynamics without network effects. Here we
adopt α = 0.5, namely Φ averages both neighbors and itself as
GCN in (Kipf and Welling 2017).

E Results in absolute error.
We show corresponding `1 loss error in Table 8,Table 9 and Ta-
ble 10 with respect to the normalized `1 loss error in Section 5
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Figure 12: Biological mutualistic interaction on different networks.

Table 5: `2 regularization parameter configurations in continuous-time extrapolation prediction
Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1e-3 1e-6 1e-3 1e-3 1e-5
No-Graph 1e-3 1e-6 1e-3 1e-3 1e-5
No-Control 1e-3 1e-6 1e-3 1e-3 1e-5
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

No-Encode 1e-2 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-2 1e-4 1e-4 1e-4 1e-4
No-Control 1e-2 1e-4 1e-4 1e-4 1e-4
NDCN 1e-2 1e-4 1e-4 1e-4 1e-4

Gene
Regulation

No-Embed 1e-4 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-4 1e-4 1e-4 1e-4 1e-4
No-Control 1e-4 1e-4 1e-4 1e-4 1e-4
NDCN 1e-4 1e-4 1e-4 1e-4 1e-4

learning continuous-time network dynamics and Section 6 learning
regularly-sampled dynamics. The same conclusions can be made as
in Table 1,Table 2 and Table 3.

F Learning Semantic labels
We summarize datasets, baselines, and experimental setups in Sec-
tion 7 learning semantic labels at the terminal time.

F.1 Datasets and Baselines.
We use three standard benchmark datasets (i.e., citation network
Cora, Citeseer and Pubmed), and follow the same fixed split scheme
for train, validation, and test as in (Yang, Cohen, and Salakhutdinov
2016; Kipf and Welling 2017; Thekumparampil et al. 2018). We
summarize the datasets in Appendix F.1 Table 11. We compare
our NDCN model with graph convolution network (GCN) (Kipf
and Welling 2017), attention-based graph neural network (AGNN)
(Thekumparampil et al. 2018), and graph attention networks (GAT)
(Veličković et al. 2017) with sophisticated attention parameters.

F.2 Experimental setup.
For the consistency of comparison with prior work, we follow the
same experimental setup as (Kipf and Welling 2017; Veličković et
al. 2017; Thekumparampil et al. 2018). We train our model based
on the training datasets and get the accuracy of classification results
from the test datasets with 1, 000 labels as summarized in Table 11.
Following hyper-parameter settings apply to all the datasets. We
set 16 evenly spaced time ticks in [0, T ] and solve the initial value
problem of integrating the differential equation systems numerically
by DOPRI5 (Dormand 1996). We train our model for a maximum
of 100 epochs using Adam (Kingma and Ba 2015) with learning
rate 0.01 and `2-norm regularization 0.024. We grid search the best
terminal time T ∈ [0.5, 1.5] and the α ∈ [0, 1]. We use 256 hidden
dimension. We report the mean and standard deviation of results
for 100 runs in Table 4. It’s worthwhile to emphasize that in our
model there is no running control parameters (i.e. linear connection
layers in GNNs), no dropout (e.g., dropout rate 0.5 in GCN and 0.6
in GAT), no early stop, and no concept of layer/network depth (e.g.,
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Figure 13: Gene regulation dynamics on different networks.

Table 6: `2 regularization parameter configurations in continuous-time interpolation prediction
Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1e-3 1e-6 1e-3 1e-3 1e-5
No-Graph 1e-3 1e-6 1e-3 1e-3 1e-5
No-Control 1e-3 1e-6 1e-3 1e-3 1e-5
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

No-Encode 1e-2 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-2 1e-4 1e-4 1e-4 1e-4
No-Control 1e-2 1e-4 1e-4 1e-4 1e-4
NDCN 1e-2 1e-4 1e-4 1e-4 1e-4

Gene
Regulation

No-Embed 1e-4 1e-4 1e-4 1e-4 1e-4
No-Graph 1e-4 1e-4 1e-4 1e-4 1e-4
No-Control 1e-4 1e-4 1e-4 1e-4 1e-4
NDCN 1e-4 1e-4 1e-4 1e-4 1e-4

2 layers in GCN and GAT).

G Accuracy over terminal time and α
By capturing the continuous-time network dynamics, our NDCN
gives better classification accuracy at terminal time T ∈ R+. In-
deed, when the terminal time is too small or too large, the accuracy
degenerates because the features of nodes are in under-diffusion
or over-diffusion states. We plot the mean accuracy of 100 runs of
our NDCN model over different terminal time T and α as shown in
the following heatmap plots. we find for all the three datasets their
accuracy curves follow rise and fall pattern around the best terminal
time.



Table 7: `2 regularization parameter configurations in regularly-sampled extrapolation prediction
Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-3 1e-6 1e-3 1e-3 1e-5

Mutualistic
Interaction

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-2 1e-3 1e-4 1e-4 1e-4

Gene
Regulation

LSTM-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
GRU-GNN 1e-3 1e-3 1e-3 1e-3 1e-3
RNN-Control 1e-3 1e-3 1e-3 1e-3 1e-3
NDCN 1e-4 1e-4 1e-4 1e-3 1e-3

Table 8: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network accurately. Each
result is the `1 error with standard deviation from 20 runs for 3 dynamics on 5 networks for each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1.143± 0.280 1.060± 0.195 0.950± 0.199 0.948± 0.122 1.154± 0.167
No-Graph 1.166± 0.066 0.223± 0.049 0.260± 0.020 0.410± 0.023 0.926± 0.116
No-Control 2.803± 0.549 1.076± 0.153 0.962± 0.163 1.176± 0.179 1.417± 0.140
NDCN 0.158± 0.047 0.163± 0.060 0.187± 0.020 0.097± 0.016 0.183± 0.039

Mutualistic
Interaction

No-Encode 1.755± 0.138 1.402± 0.456 2.632± 0.775 1.947± 0.106 2.007± 0.695
No-Graph 2.174± 0.089 1.038± 0.434 1.301± 0.551 1.936± 0.085 1.323± 0.204
No-Control 5.434± 0.473 1.669± 0.662 9.353± 3.751 4.111± 0.417 2.344± 0.424
NDCN 1.038± 0.181 0.584± 0.277 0.653± 0.230 0.521± 0.124 0.502± 0.210

Gene
Regulation

No-Encode 2.164± 0.957 6.954± 5.190 3.240± 0.954 1.445± 0.395 8.204± 3.240
No-Graph 0.907± 0.058 4.872± 0.078 4.206± 0.025 0.875± 0.016 6.112± 0.143
No-Control 4.458± 0.978 27.119± 2.608 6.768± 0.741 3.320± 0.982 20.002± 2.160
NDCN 1.089± 0.487 0.715± 0.210 0.342± 0.088 0.243± 0.051 0.782± 0.199
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Figure 14: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Cora dataset
in heatmap plot.
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Figure 15: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Cora dataset
in 3D surface plot.



Table 9: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network accurately. Each result
is the `1 error with standard deviation from 20 runs for 3 dynamics on 5 networks for each method.

Grid Random Power Law Small World Community

Heat
Diffusion

No-Encode 1.222± 0.486 1.020± 0.168 0.982± 0.143 1.066± 0.280 1.336± 0.239
No-Graph 1.600± 0.068 0.361± 0.022 0.694± 0.058 0.956± 0.079 0.954± 0.053
No-Control 2.169± 0.108 1.230± 0.266 1.280± 0.216 1.544± 0.128 1.495± 0.171
NDCN 0.121± 0.024 0.121± 0.017 0.214± 0.024 0.129± 0.017 0.165± 0.019

Mutualistic
Interaction

No-Encode 0.620± 0.081 2.424± 0.598 1.755± 0.560 0.488± 0.077 2.777± 0.773
No-Graph 0.626± 0.143 0.967± 0.269 1.180± 0.171 0.497± 0.101 1.578± 0.244
No-Control 1.534± 0.158 2.836± 1.022 3.328± 0.314 1.212± 0.116 3.601± 0.940
NDCN 0.164± 0.031 0.843± 0.267 0.333± 0.055 0.085± 0.014 0.852± 0.247

Gene
Regulation

No-Encode 1.753± 0.555 4.278± 3.374 2.560± 0.765 1.180± 0.389 5.106± 2.420
No-Graph 1.140± 0.101 3.768± 0.316 3.137± 0.264 0.672± 0.050 4.639± 0.399
No-Control 3.010± 0.228 9.939± 1.185 3.139± 0.313 2.082± 0.293 8.659± 0.952
NDCN 0.262± 0.046 0.455± 0.174 0.222± 0.034 0.180± 0.032 0.562± 0.130

Table 10: Regularly-sampled Extrapolation Prediction. Our NDCN predicts different structured sequences accurately. Each result
is the `1 error with standard deviation from 20 runs for 3 dynamics on 5 networks for each method.

Grid Random Power Law Small World Community

Heat
Diffusion

LSTM-GNN 0.489± 0.081 0.824± 0.294 0.475± 0.196 0.442± 0.083 0.517± 0.162
GRU-GNN 0.428± 0.085 0.349± 0.090 0.337± 0.049 0.357± 0.065 0.302± 0.031
RNN-GNN 0.717± 0.227 0.957± 0.215 0.722± 0.247 0.833± 0.145 0.615± 0.000
NDCN 0.165± 0.027 0.180± 0.063 0.208± 0.015 0.103± 0.014 0.201± 0.029

Mutualistic
Interaction

LSTM-GNN 1.966± 0.126 3.749± 3.749 2.380± 0.626 2.044± 0.086 3.463± 3.095
GRU-GNN 1.905± 0.157 0.162± 0.564 1.077± 0.071 1.792± 0.165 0.510± 0.549
RNN-GNN 2.165± 0.004 1.303± 1.747 1.056± 0.034 2.012± 0.065 1.140± 0.887
NDCN 1.414± 0.060 0.734± 0.168 0.990± 0.442 0.557± 0.078 0.528± 0.122

Gene
Regulation

LSTM-GNN 1.883± 0.218 26.750± 5.634 3.733± 1.220 0.743± 0.112 16.534± 5.094
GRU-GNN 1.641± 0.191 20.240± 2.549 3.381± 1.455 0.626± 0.099 14.4± 2.358
RNN-GNN 1.906± 0.464 22.46± 2.276 4.036± 1.229 0.795± 0.300 14.496± 1.077
NDCN 1.267± 0.672 0.946± 0.357 0.397± 0.133 0.312± 0.043 0.901± 0.160

Table 11: Statistics for three real-world citation network
datasets. N, E, D, C represent number of nodes, edges, fea-
tures, classes respectively.

Dataset N E D C Train/Valid/Test

Cora 2, 708 5, 429 1, 433 7 140/500/1, 000
Citeseer 3, 327 4, 732 3, 703 6 120/500/1, 000
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Figure 16: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Citeseer
dataset.
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Figure 17: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Citeseer
dataset in 3D surface plot.
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Figure 18: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Pubmed
dataset.
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Figure 19: Mean classification accuracy of 100 runs of our
NDCN model over terminal time and α for the Pubmed
dataset in 3D surface plot.


