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Differential Deep Learning on Graphs
Graphs and Differential Equations are general tools to 

describe structures and dynamics of complex systems
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Graph
Linked objects: nodes + edges
Network

Edge

Node
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Graph
Linked objects: nodes + edges
oE.g.: Internet, social networks, molecules, etc.

Node: Atoms,   Edge: BondsNode: IPs,   Edge: Hyperlinks

Edge

Node

Node: users,   Edge: Social links
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Differential Equations
Equations which relates functions (physical 

quantities) and their derivatives (rates of change), e.g.
oe.g.Population growth
Exponential growth: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑎𝑎𝑎𝑎  𝑥𝑥(t) = 𝐶𝐶𝑒𝑒𝑎𝑎𝑎𝑎 solution by integrating

Power-law growth: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎 𝑥𝑥
𝑡𝑡
 𝑥𝑥(t) = 𝐶𝐶𝑡𝑡𝑎𝑎 solution by integrating

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 6



Differential Equations
Equations which relates functions (physical 

quantities) and their derivatives (rates of change), e.g.
oe.g.Population growth
Exponential growth: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑎𝑎𝑎𝑎  𝑥𝑥(t) = 𝐶𝐶𝑒𝑒𝑎𝑎𝑎𝑎 solution by integrating

Power-law growth: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎 𝑥𝑥
𝑡𝑡
 𝑥𝑥(t) = 𝐶𝐶𝑡𝑡𝑎𝑎 solution by integrating

Differential Equation System
oA system of differential equations
oNewton’s law of cooling: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝑘𝑘𝑘𝑘𝑘𝑘

Laplacian matrix: L=D-A, A: adjacency matrix
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Why Graphs and Differential Equations?
Question (Social network analysis): How does 

information spread in social networks? How does 
information flow form complex structural patterns?

Image from: Zang et al. 2019. Uncovering 
Pattern Formation of Information Flow. KDD. DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 8
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Why Graphs and Differential Equations?
Question (Urban computing): Can we predict and 

control traffic flows on road networks?
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Why Graphs and Differential Equations?
Question (Drug discovery): Can we predict molecular 

properties? Can we design novel drug molecule with 
optimized properties?
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Differential Deep Learning on Graphs
Graphs and Differential Equations are general tools to 

describe structures and dynamics of complex systems
Inspired by the differential equations, we can design 

and analyze deep models
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Residual Net. Differential Equations

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕

Conv

ReLU

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 = 𝟏𝟏

+

𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Plain Convolution Net. Residual Net.

12
He et al. 2016. Identity mappings in deep 
residual networks ECCV.
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Residual Net. Differential Equations

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒉𝒉𝒕𝒕+𝜹𝜹 = 𝒉𝒉𝒕𝒕 + �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉,𝜽𝜽, 𝝉𝝉)𝒅𝒅𝒅𝒅

𝒉𝒉𝒕𝒕

Conv

ReLU

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 = 𝟏𝟏

+

𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 → 𝟎𝟎+

+ �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)
𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝜹𝜹

𝒉𝒉𝒕𝒕+𝟏𝟏 − 𝒉𝒉𝒕𝒕
𝛿𝛿

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕 , 𝜹𝜹 = 𝟏𝟏
𝒅𝒅𝒉𝒉𝒕𝒕
𝒅𝒅𝒕𝒕

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕

Plain Convolution Net. Residual Net. Differential Equation Net.

13
Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS.
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RNN  Differential Equations

𝒉𝒉𝒕𝒕𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU

𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU
𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

+
𝒉𝒉𝒕𝒕

×
𝜹𝜹

=
𝟏𝟏

𝒉𝒉𝒕𝒕 = 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 𝒉𝒉𝒕𝒕 = 𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕
𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕 𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕

𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕)

RNN Residual RNN
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RNN  Differential Equations

𝒉𝒉𝒕𝒕𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU

𝒙𝒙𝒕𝒕
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𝒚𝒚𝒕𝒕

𝒉𝒉𝒕𝒕−𝟏𝟏

W
eight

ReLU
𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

+
𝒉𝒉𝒕𝒕

×
𝜹𝜹

=
𝟏𝟏 𝒉𝒉𝒕𝒕−𝜹𝜹

W
eight

ReLU

𝒙𝒙𝒕𝒕

Output

𝒚𝒚𝒕𝒕

+
𝒉𝒉𝒕𝒕

×
𝜹𝜹
→
𝟎𝟎
+

�
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒉𝒉𝒕𝒕 = 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 𝒉𝒉𝒕𝒕 = 𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 𝒉𝒉𝒕𝒕 = 𝒉𝒉𝒕𝒕−𝜹𝜹 + �
𝒕𝒕−𝜹𝜹

𝒕𝒕

𝒇𝒇(𝒉𝒉,𝒙𝒙,𝜽𝜽, 𝝉𝝉)𝒅𝒅𝒅𝒅
𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕

𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕 𝒚𝒚𝒕𝒕 = 𝒐𝒐 𝒉𝒉𝒕𝒕,𝒘𝒘𝒕𝒕

𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕) 𝒇𝒇(𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕)

𝒉𝒉𝒕𝒕−𝒉𝒉𝒕𝒕−𝟏𝟏
𝜹𝜹

= 𝒇𝒇 𝒉𝒉𝒕𝒕−𝟏𝟏,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕 , 𝜹𝜹=1 𝒅𝒅𝒉𝒉𝒕𝒕
𝒅𝒅𝒕𝒕

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝒙𝒙𝒕𝒕,𝜽𝜽𝒕𝒕

RNN Residual RNN Differential Equation RNN

15Pearlmutter1995. Gradient calculations for dynamic recurrent neural networks: A survey. TNN.

http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://ieeexplore.ieee.org/abstract/document/410363/
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Normalizing flowDifferential Equations
An invertible generative model
oGoal: X~𝑷𝑷 𝑋𝑋

Inference:𝑍𝑍 = 𝑓𝑓𝜃𝜃(𝑋𝑋)
oFrom complex to simple

Generation:𝑋𝑋 = 𝑓𝑓𝜃𝜃−1(𝑍𝑍)
oGenerate complex by invertible mapping

log𝑷𝑷 𝑋𝑋 = log𝑷𝑷(𝑍𝑍) + log | det(𝜕𝜕𝑓𝑓𝜃𝜃
𝜕𝜕𝜕𝜕

) |
oChange of variable formula
oExact maximum likelihood training

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

Inference Generation
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𝑷𝑷 𝑿𝑿 : 
Complex empirical distribution

𝑷𝑷 𝒁𝒁 :
Simple latent distribution 
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Normalizing flow  Differential Equations
Flow
oInference:𝑍𝑍𝑡𝑡+1 = 𝑓𝑓𝜃𝜃(𝑍𝑍𝑡𝑡) , Generation:𝑍𝑍𝑡𝑡 = 𝑓𝑓𝜃𝜃−1(𝑍𝑍𝑡𝑡+1)
olog𝑷𝑷 𝑍𝑍𝑡𝑡 = log𝑷𝑷(𝑍𝑍𝑡𝑡+1) + log | det(𝜕𝜕𝑓𝑓𝜃𝜃

𝜕𝜕𝜕𝜕
) |

Residual Flow
oInference:𝑍𝑍𝑡𝑡+1 = 𝑍𝑍𝑡𝑡 + 𝛿𝛿𝑓𝑓𝜃𝜃 𝑍𝑍𝑡𝑡 , Generation:𝑍𝑍𝑡𝑡 = (𝐼𝐼 + 𝛿𝛿𝑓𝑓𝜃𝜃)−1 𝑍𝑍𝑡𝑡+1 , 𝛿𝛿=1
olog𝑃𝑃𝑀𝑀 𝑍𝑍𝑡𝑡 = log𝑃𝑃𝑍𝑍(𝑍𝑍𝑡𝑡+1) + log | det(𝜕𝜕(𝐼𝐼+𝛿𝛿𝑓𝑓𝜃𝜃)

𝜕𝜕𝜕𝜕
) |

Differential Eq. Flow
oInference:𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝜃𝜃 𝑍𝑍, 𝑡𝑡 , Generation:𝑍𝑍 0 = 𝑍𝑍 𝑡𝑡 − ∫𝟎𝟎

𝒕𝒕 𝒇𝒇𝜽𝜽(𝒁𝒁, 𝝉𝝉)𝒅𝒅𝒅𝒅

o
𝒅𝒅 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒁𝒁(𝒕𝒕))

𝒅𝒅𝒅𝒅
= −𝒕𝒕𝒕𝒕( 𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅(𝒕𝒕)
)

Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS. DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 17
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An example: NICE v.s. Differential NICE
 NICE or RealNVP
o splitting dimensions + residual flow updated alternately

 Split: 
oX= 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐
o 𝐙𝐙 = (𝐙𝐙𝟏𝟏, 𝐙𝐙𝟐𝟐)

 Add: 
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏 (save information for reverse)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐 + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟏𝟏) (Residual)
oReverse mapping:
𝑿𝑿𝟏𝟏 = 𝒁𝒁𝟏𝟏
𝑿𝑿𝟐𝟐 = 𝒁𝒁𝟐𝟐 − 𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

 Next layer by alternating update:
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏 + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟐𝟐) (Residual)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐 (save information for reverse)

 …

𝒅𝒅𝒁𝒁𝟏𝟏
𝒅𝒅𝒅𝒅
𝒅𝒅𝒁𝒁𝟐𝟐
𝒅𝒅𝒅𝒅

=
𝒇𝒇𝜽𝜽(𝒁𝒁𝟐𝟐)
𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

Hamiltonian Systems
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Dinh et al. 2014. Nice: Non-linear independent components estimation
Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

𝒁𝒁 = (𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐)

Split

Add

×L layers CNN
𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝒇𝒇

𝑿𝑿 = (𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐)
Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS.

https://arxiv.org/abs/1410.8516
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DEs  DNNS by Numerical Methods

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)𝒉𝒉𝒕𝒕+𝜹𝜹 = 𝒉𝒉𝒕𝒕 + �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉,𝜽𝜽, 𝝉𝝉)𝒅𝒅𝒅𝒅

Conv

ReLU

× 𝜹𝜹 = 𝟏𝟏

+

𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝟏𝟏

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)

Conv

ReLU

× 𝜹𝜹 → 𝟎𝟎+

+ �
𝒕𝒕

𝒕𝒕+𝜹𝜹

𝒇𝒇(𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕)
𝒉𝒉𝒕𝒕

𝒉𝒉𝒕𝒕+𝜹𝜹

𝒉𝒉𝒕𝒕+𝟏𝟏 = 𝒉𝒉𝒕𝒕 + 𝜹𝜹𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕 , 𝜹𝜹 = 𝟏𝟏
output = input + step * rate of change

𝒅𝒅𝒉𝒉𝒕𝒕
𝒅𝒅𝒕𝒕

= 𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕

Residual Net.Differential Equation Net.
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Numerical Methods:
Integrating DEs by discretization

Gif image from 
https://jmahaffy.sdsu.edu/courses/f00/math122/l
ectures/num_method_diff_equations/nummetho
d_diffeq.html

𝒉𝒉𝑛𝑛+𝟏𝟏 = 𝒉𝒉𝟎𝟎 + �
𝒕𝒕=𝟏𝟏

𝒏𝒏
𝜹𝜹𝒇𝒇 𝒉𝒉𝒕𝒕,𝜽𝜽𝒕𝒕

𝜹𝜹

https://jmahaffy.sdsu.edu/courses/f00/math122/lectures/num_method_diff_equations/nummethod_diffeq.html


Why Such Connections
Deep Learning  Differential Equations
oAnalysis
Math analysis tools
Concepts in dynamic system and control: stability, robustness, complexity, 

resilience, etc.
oModeling Continuous-time process
Physical meaning. The laws of nature are expressed as differential equations.

Differential Equations  Deep Learning
Design

There are many dynamical systems and differential equations.
Discretization of continuous time-varying neural dynamics  Deep Neural Networks
DNNs implemented by modern auto-differentiation softwares are more flexible, 
expressive and efficient

Generative models and Invertible structures
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oAnalysis
Math analysis tools
Concepts in dynamic system and control: stability, robustness, complexity, 

resilience, etc.
oModeling Continuous-time process
Physical meaning. The laws of nature are expressed as differential equations.

Differential Equations  Deep Learning
oDesign
There are many dynamical systems and differential equations.
Discretization of continuous time-varying dynamics  Deep Neural Networks
DNNs implemented by modern auto-differentiation softwares are more flexible, 

expressive and efficient
oGenerative models and Invertible structures
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Differential Deep Learning on Graphs
Graphs and Differential Equations are general tools to 

describe structures and dynamics of complex systems
Inspired by the Differential Equations, we can design 

and analyze Deep Models
For applications on graphs (our focus), including:
oMolecular graph generation
oLearning dynamics on graphs
oMechanism discovery

in a data-driven manner
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Molecular Graph Generation
Goal: To generate novel molecules with optimized 

properties
Graph Analysis tasks
oGraph generation: G ~P(𝐺𝐺)
oGraph property prediction: 𝑓𝑓(𝐺𝐺)
oGraph optimization: G G′ and maximizing 𝑓𝑓 𝐺𝐺′ − 𝑓𝑓(𝐺𝐺)

P(    )? f(    )=?
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Learning Dynamics on Graphs
Goal: To predict temporal change or final states of 

complex systems
Graph Analysis tasks
oContinuous-time network dynamics prediction 𝑋𝑋(𝑡𝑡)
oStructured sequence prediction 𝑋𝑋[𝑡𝑡 + 𝑘𝑘]
oNode classification/regression  Y(𝑋𝑋)

?
Graph Dynamics of each nodes
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+ Dynamic
Process

Adjacency Matrix



Mechanism Discovery
Goals: To find dynamical laws of complex systems
Graph Analysis tasks
oDensity estimation vs. mechanism discovery
oData-driven discovery of differential equations

?
Image from http://networksciencebook.com/chapter/4#hubs
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𝒅𝒅𝒅𝒅

http://networksciencebook.com/chapter/4#hubs


Why Is It Hard?
Complex combinatorial structures of graphs
oDue to complex combinations of node and edge sets
oNodes and edges can have multiple types
Node types: C, H, O, etc., Edge types: single, double, triple bond.
oComplexity: the scale of drug-like graphs ~ 1060
oDeep models are majorly designed for regular grid structures 
(image or text)

vs.
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Why Is It Hard?

vec

𝑓𝑓:𝐺𝐺 → ℝ𝑑𝑑
ℝ𝑑𝑑

vec

ℝ𝑑𝑑 𝑓𝑓:ℝ𝑑𝑑 → 𝐺𝐺

?

?
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Encoding graph is hard, Decoding graph is much 
harder
oEncoding, embedding, inference with graph input

oDecoding, generation with graph output
E.g. Chemically valid molecular graphs



Why Is It Hard?
Complex nonlinear dynamics on graphs

+ 

+ 

+ 

Linear Dynamics

Linear Dynamics

Non-Linear Dynamics

𝒇𝒇(𝑿𝑿 𝒕𝒕 ,𝑮𝑮,𝜽𝜽, 𝒕𝒕)

?
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This Tutorial
Molecular Graph Generation: to generate novel molecules with 

optimized properties
oGraph generation
oGraph property prediction
oGraph optimization
Learning Dynamics on Graphs: to predict temporal change or final 

states of complex systems
oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression
Mechanism discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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This Tutorial
www.calvinzang.com/DDLG_AAAI_2020.html
AAAI-2020
Friday, February 7, 2020, 2:00 PM -6:00 PM
Sutton North, Hilton New York Midtown, NYC
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http://www.calvinzang.com/DDLG_AAAI_2020.html
https://aaai.org/Conferences/AAAI-20/


Differential Deep Learning on 
Graphs and its Applications

Chengxi Zang and Fei Wang
Weill Cornell Medicine
www.calvinzang.com
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Thank You!

http://www.calvinzang.com/
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