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This Tutorial
Molecular Graph Generation: to generate novel molecules with 

optimized properties
oGraph generation
oGraph property prediction
oGraph optimization
Learning Dynamics on Graphs: to predict temporal change or final 

states of complex systems
oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression
Mechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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Part 1:
MoFlow: An Invertible Flow Model 
for Generating Molecular Graphs

Chengxi Zang and Fei Wang
Weill Cornell Medicine

www.calvinzang.com
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Background: Drug Discovery

Target
Molecule for 

human 
Clinical trial

Screen millions of 
functional 

molecules to inform 
design

Design, make, test 
1000s new 

molecules with 
optimized property

In-vitro and in-vivo 
experiments;

synthesis

Molecule for 
human 

Clinical trial
4-7 years

Nature Biotechnology 2019 
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Phase I, II, 
III, Launch
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Lead Discovery
1.5 years

Lead 
Optimization

3 years

Preclinical
1.5 years

Challenges of Drug Discovery

Target
Molecule for 

human 
Clinical trial

1. Lengthy, costly, & with high failure rate
o1.5+3+1.5 = 6 years before clinical trail
o33% of total cost of medicine development
oClinical success ~12%, poor translation in 

patients 
oHow to accelerate the process and reduce 

the cost and failure rate of such a sequential 
pipeline?
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Lead Discovery
1.5 years

Lead 
Optimization

3 years

Preclinical
1.5 years

Challenges of Drug Discovery

Target
Molecule for 

human 
Clinical trial

2. Big Chemical Data but largely 
unexplored
oThe scale of potential drug-like chemical 

data: 1033~ 1060
oSampled points in existing chemical 

database: 106
oHow to explore such a big chemical space 

and generate novel molecule candidates?
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Lead Discovery
1.5 years

Lead 
Optimization

3 years

Preclinical
1.5 years

Challenges of Drug Discovery

Target
Molecule for 

human 
Clinical trial

3. Evaluation and optimization over 
sequence or graphs
oDiscrete Molecule Data: smiles -> sequence, 

molecular graphs -> graph, etc.
oEvaluation: Mapping from discrete molecules to 

properties.
oOptimization: Generating novel molecules with 

optimized properties.
oHow to search for discrete molecules guided by 

the target property in the chemical space?
Science 2018DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 9
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Drug Discovery Driven by Data and AI

Deep Learning methods driven by 
data

oBetter than human discovery, hopefully

oA generative model which 
approximately represents the large 
chemical space

oSearch algorithm between the chemical 
space and property space.

Challenges
oHow to accelerate the process and 

reduce the cost and failure rate of such a 
sequential pipeline?

oHow to explore such a big chemical space 
and generate novel molecule candidates?

oHow to search for discrete molecules 
guided by the target property in the 
chemical space?
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Problem Definition
Input: 
o 𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑁𝑁 : Molecule data samples
o𝑓𝑓(𝑀𝑀): Some property functions of molecules

Method:
o �𝑀𝑀~𝑃𝑃𝑴𝑴(𝑀𝑀) : A generative model (distribution) of molecules
oSearching molecules in 𝑃𝑃𝑴𝑴(𝑀𝑀) guided by 𝑓𝑓(𝑀𝑀).

Output:
oNovel molecules {𝑴𝑴𝑁𝑁+𝟏𝟏,𝑴𝑴𝑁𝑁+𝟐𝟐, … } with desired properties.
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Related Works
Sequence-based VAE model
oSMILES (Simplified molecular-input line-entry system) string
oGrammar Variational Autoencoders (Grammar-VAE)
oLimitation: Sequences lose structural information

12
Image from: Kusner et al. 2017. Grammar Variational Autoencoder.Image from https://en.wikipedia.org/wiki/Simplified_molecular-

input_line-entry_system

https://arxiv.org/abs/1703.01925
https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system


Related Works
Graph-based VAE model
oStructural information of molecules is better 
kept by graphs
E.g., similarity, chemical validity
oJunction Tree Variational Autoencoder (JT-
VAE)
oLimitation
Only for tree-structured molecules.
Ciclosporin: Large circle
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Image from: Jin et al. 2018. Junction Tree 
Variational Autoencoder for Molecular Graph 
Generation. ICML

https://en.wikipedia.org/wiki/Ciclosporin

https://arxiv.org/abs/1802.04364
https://en.wikipedia.org/wiki/Ciclosporin


Related Works
GAN-based models
oMolecular Generative adversarial network (MolGAN)
oLimitation
No chemical validity guarantee; Mode collapse->tend to generate duplicated 

molecules  few novel molecules

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 14
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https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1805.11973


Autoregressive-based models
oGraph Convolutional Policy Network (GCPN)
oGraph Autoregressive Flow model (GraphAF)
oReject sampling for validity + Reinforcement Learning for 
optimization
oLimitations
Sequential generation, tend to generate long chains.

Related Works
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Image from: You et al. 2018. Graph Convolutional Policy Network 
for Goal-Directed Molecular Graph Generation. NeurIPS

Image from: Shi et al. 2020. GraphAF: a Flow-based 
Autoregressive Model for Molecular Graph Generation. ICLR

https://arxiv.org/abs/1806.02473
https://arxiv.org/abs/2001.09382


Related Works
Flow-based models
oGraphNVP: Graph Real-valued Non-Volume Preserving flow
Only use add coupling
oLimitations
Unstable deep structures, No chemical validity guarantee, Few novel 

molecules
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Image from: Madhawa et al. 2019. GraphNVP: An Invertible Flow Model for Generating Molecular Graphs

https://arxiv.org/abs/1905.11600


Related Works
Classified by Data: 
oSequence: SMILES 
oGraph: molecular graphs
Classified by Deep Generative Models:
oAutoregressive Models (AR)
oVariational Autoencoders (VAE)
oGenerative Adversarial Networks (GAN)
oNormalizing Flow Models (Flow)
Classified by Search & Optimization
oGradient ascend
oReinforcement learning
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Our Choice
Classified by Data: 
oSequence: SMILES 
oGraph: molecular graphs
Classified by Deep Generative Models:
oAutoregressive Models (AR)
oVariational Autoencoders (VAE)
oGenerative Adversarial Networks (GAN)
oNormalizing Flow Models (Flow)
Classified by Search & Optimization
oGradient ascend
oReinforcement learning
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Related works: Basics of Normalizing Flow
An invertible generative model
oGoal: X~𝑷𝑷 𝑋𝑋

 Inference:𝑍𝑍 = 𝑓𝑓𝜃𝜃(𝑋𝑋)
oFrom complex to simple, e.g. Z is Gaussian

Generation:𝑋𝑋 = 𝑓𝑓𝜃𝜃−1(𝑍𝑍)
oGenerate complex by invertible mapping
Exact Maximum Likelihood Training
oChange of variable log𝑷𝑷 𝑋𝑋 = log𝑷𝑷(𝑍𝑍) + log | det(𝜕𝜕𝑓𝑓𝜃𝜃

𝜕𝜕𝜕𝜕
) |

oargmax
𝜃𝜃

𝐸𝐸𝑀𝑀~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[log𝑃𝑃𝑀𝑀(𝑀𝑀;𝜃𝜃)]

Network structures:
o𝑓𝑓𝜃𝜃: invertible DNNs, each layer is invertible
oComputing det(𝜕𝜕𝑓𝑓𝜃𝜃

𝜕𝜕𝜕𝜕
) should be efficient

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.
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Inference Generation

𝑷𝑷 𝑿𝑿 : 
Complex empirical distribution

𝑷𝑷 𝒁𝒁 :
Simple latent distribution 

http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1605.08803
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf


Related works: NICE Model
 NICE: Non-linear Independent Components Estimation
o splitting dimensions + residual flow updated alternately

 Split: 
oX= 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐
o 𝐙𝐙 = (𝐙𝐙𝟏𝟏, 𝐙𝐙𝟐𝟐)

 Add: 
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏 (save information for reverse)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐 + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟏𝟏) (Residual)
oReverse mapping:
𝑿𝑿𝟏𝟏 = 𝒁𝒁𝟏𝟏
𝑿𝑿𝟐𝟐 = 𝒁𝒁𝟐𝟐 − 𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

 Next layer by alternating update:
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏 + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟐𝟐) (Residual)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐 (save information for reverse)

 …

𝒅𝒅𝒁𝒁𝟏𝟏
𝒅𝒅𝒅𝒅
𝒅𝒅𝒁𝒁𝟐𝟐
𝒅𝒅𝒅𝒅

=
𝒇𝒇𝜽𝜽(𝒁𝒁𝟐𝟐)
𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

Hamiltonian Systems
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Dinh et al. 2014. Nice: Non-linear independent components estimation
Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

𝒁𝒁 = (𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐)

Split

Add

×L layers CNN
𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝒇𝒇

𝑿𝑿 = (𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐)
Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS.

https://arxiv.org/abs/1410.8516
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1605.08803
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf


Related works: RealNVP Model
 RealNVP: Real-valued Non-Volume Preserving flow
o splitting dimensions + affine updated alternately

 Split: 
oX= 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐
o 𝐙𝐙 = (𝐙𝐙𝟏𝟏, 𝐙𝐙𝟐𝟐)

 Affine: 
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏 (save information for reverse)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐𝒆𝒆𝒔𝒔𝜽𝜽(𝑿𝑿𝟏𝟏) + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟏𝟏) (with scale)
oReverse mapping:
𝑿𝑿𝟏𝟏 = 𝒁𝒁𝟏𝟏
𝑿𝑿𝟐𝟐 = 𝒆𝒆−𝒔𝒔𝜽𝜽(𝑿𝑿𝟏𝟏)[𝒁𝒁𝟐𝟐 − 𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)]

 Next layer by alternating update:
o 𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏𝒆𝒆𝒔𝒔𝜽𝜽(𝑿𝑿𝟐𝟐) + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟐𝟐) (Residual)
o 𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐 (save information for reverse)

 …

𝒅𝒅𝒁𝒁𝟏𝟏
𝒅𝒅𝒅𝒅
𝒅𝒅𝒁𝒁𝟐𝟐
𝒅𝒅𝒅𝒅

=
𝒇𝒇𝜽𝜽(𝒁𝒁𝟐𝟐)
𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

Hamiltonian Systems
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Dinh et al. 2014. Nice: Non-linear independent components estimation
Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

𝒁𝒁 = (𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐)

Split

affine

×L layers CNN
𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝒇𝒇, 𝒔𝒔

𝑿𝑿 = (𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐)
Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS.

https://arxiv.org/abs/1410.8516
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1605.08803
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
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Related works: Glow Model
 Glow: Generative flow with invertible 

1*1 convolutions
 Actnorm: 
oStable dynamics
o𝐵𝐵 = 𝐵𝐵−𝜇𝜇

𝜎𝜎2+𝜖𝜖
each channel over batch

 Invertible 1*1 convolution: 
oExpressive power
oℝ𝑐𝑐×𝑛𝑛×𝑛𝑛 × ℝ𝑐𝑐×𝑐𝑐 → ℝ𝑐𝑐×𝑛𝑛×𝑛𝑛

 Affine: 
o𝒁𝒁𝟏𝟏 = 𝑿𝑿𝟏𝟏
o𝒁𝒁𝟐𝟐 = 𝑿𝑿𝟐𝟐𝒆𝒆𝒔𝒔𝜽𝜽(𝑿𝑿𝟏𝟏) + 𝒇𝒇𝜽𝜽(𝑿𝑿𝟏𝟏)

𝒅𝒅𝒁𝒁𝟏𝟏
𝒅𝒅𝒅𝒅
𝒅𝒅𝒁𝒁𝟐𝟐
𝒅𝒅𝒅𝒅

=
𝒇𝒇𝜽𝜽(𝒁𝒁𝟐𝟐)
𝒇𝒇𝜽𝜽(𝒁𝒁𝟏𝟏)

Hamiltonian Systems
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Kingma et al. 2018. Glow: Generative flow with invertible 1x1 convolutions. NeurIPS.

𝒁𝒁 = (𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐)

Split

affine

×L layers

CNN
𝑿𝑿𝟏𝟏𝑿𝑿𝟐𝟐

𝒇𝒇, 𝒔𝒔

𝑿𝑿 = (𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐)
Chen et al. 2019. Neural Ordinary 
Differential Equations. NeurIPS.

Invertible 
1*1 Conv

Actnorm

http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-con
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf


Why Flow Frameworks
Invertible mappings 
oPotentials for generating more molecules
oVAE, GAN, AR are not invertible
oFlow learns a strict superset and represents chemical space better
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Chemical space

Training
Data Model

Training
Data Model

Training
DataFlow

Model
or

VAE, GAN, AR VAE, GAN, AR



Why Flow Frameworks
Exact maximum likelihood training
oVAE,GAN are not

Efficient one-shot inference and generation
oCapturing molecular structures in a holistic way
oAR is step-by-step

Better performance shown later
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Our MoFlow Model
Molecular Graph
oMolecules consist of atoms and bonds
oMolecule = (Atom, Bond)
oAtom ∈ {0,1}𝑛𝑛×𝑘𝑘, n Nodes in k (atom) types
oBond ∈ 0,1 𝑐𝑐×𝑛𝑛×𝑛𝑛, Edges in c (bond) types
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Our MoFlow Model
MoFlow: 
oMolecule=(Atom, Bond) How to model intrinsic atom-bond 
structures of molecule?
o𝑃𝑃𝑀𝑀 𝑀𝑀 = 𝑃𝑃𝑀𝑀 𝐴𝐴,𝐵𝐵 ≈ 𝑃𝑃𝐴𝐴|𝐵𝐵 𝐴𝐴 𝐵𝐵 𝑃𝑃𝐵𝐵(𝐵𝐵)
oAny flow model 𝑓𝑓𝐵𝐵(B) for bonds 𝑃𝑃𝐵𝐵(𝐵𝐵)
Generating graph skeleton by 𝑃𝑃𝐵𝐵(𝐵𝐵)
oGraph conditional flow 𝑓𝑓𝐴𝐴|𝐵𝐵(𝐴𝐴|𝐵𝐵) for atoms given bonds 𝑃𝑃𝐴𝐴|𝐵𝐵 𝐴𝐴 𝐵𝐵
Generating nodes given graph skeleton by 𝑃𝑃𝐴𝐴|𝐵𝐵 𝐴𝐴 𝐵𝐵
oAssembling atom and bonds with validity correction
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The Generative Framework
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A variant of Glow for Bond
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 Squeeze
o 𝑋𝑋 ∈ ℝ𝑐𝑐×𝑛𝑛×𝑛𝑛 → ℝ𝑐𝑐𝑘𝑘2×𝑛𝑛

𝑘𝑘×𝑛𝑛
𝑘𝑘

 Actnorm: 
o Stable dynamics
o 𝐵𝐵 = 𝐵𝐵−𝜇𝜇

𝜎𝜎2+𝜖𝜖
each channel over batch

 Invertible 1*1 convolution: 
o Expressive power
o ℝ𝑐𝑐×𝑛𝑛×𝑛𝑛 × ℝ𝑐𝑐×𝑐𝑐 → ℝ𝑐𝑐×𝑛𝑛×𝑛𝑛

 Split: 
o Discretization of Hamiltonian system
o B= 𝑩𝑩𝟏𝟏,𝑩𝑩𝟐𝟐
o 𝐙𝐙 = (𝐙𝐙𝐁𝐁𝟏𝟏,𝐙𝐙𝑩𝑩𝟐𝟐)

 Affine coupling: 
o Stable (batchnorm2D, Sigmoid) and expressive power (Affine)
o 𝒁𝒁𝑩𝑩𝟏𝟏 = 𝑩𝑩𝟏𝟏
o 𝒁𝒁𝑩𝑩𝟐𝟐 = 𝑩𝑩𝟐𝟐⨀𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑺𝑺𝜽𝜽(𝑩𝑩𝟏𝟏)) + 𝑻𝑻𝜽𝜽(𝑩𝑩𝟏𝟏)



Graph Conditional Flow For Atoms
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 Actnorm2D: 
o Stable dynamics
o 𝐵𝐵 = 𝐵𝐵−𝜇𝜇

𝜎𝜎2+𝜖𝜖
each row over batch

 Split: 
o Discretization of Hamiltonian system on Graphs
o A= 𝐴𝐴1,𝐴𝐴2 by each row
o Z = (ZA1|B, ZA2|B)

 Graphnorm
o �𝐵𝐵𝑖𝑖 = 𝐷𝐷−1𝐵𝐵𝑖𝑖, 𝐷𝐷 = ∑𝑐𝑐,𝑖𝑖 𝐵𝐵𝑐𝑐,𝑖𝑖,𝑗𝑗 in-degree over all channels

 GraphConv(A|B)
o ∑𝑖𝑖=1𝑐𝑐 �𝐵𝐵𝑖𝑖(𝑀𝑀⊙𝐴𝐴) Wi + M ⊙𝐴𝐴 W0
o update each row by the remaining rows

 Affine coupling: 
o Stable (batchnorm, Sigmoid) and expressive power (Affine)
o 𝑍𝑍𝐴𝐴1|𝐵𝐵 = 𝐴𝐴1
o 𝑍𝑍𝐴𝐴2|𝐵𝐵 = 𝐴𝐴2⨀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝜃𝜃(𝐴𝐴1|𝐵𝐵)) + 𝑇𝑇𝜃𝜃(𝐴𝐴1|𝐵𝐵)

C N O F *

C N O F *



Molecular Graph Generation
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Graph Property Prediction



Molecular Graph Optimization

32

MLP

𝒀𝒀(𝒁𝒁)

Properties



Validity Correction
Valid molecules: valency constraints
o∑𝑐𝑐,𝑗𝑗 𝐵𝐵 𝑐𝑐, 𝑖𝑖, 𝑗𝑗 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
oC: 4, O:2, O+:3

Valid Correction
oWhile checking valency constraints:
If follows constraints: 

◦ Return the greatest connected component

Else:
◦ Delete unnecessary bond or add charge to atoms according to rules
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Experiments
1. Molecular Generation & Reconstruction
2. Visualization of Continuous Latent Space
3. Property Optimization
4. Constrained Property Optimization
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EXP1: Molecular Generation & 
Reconstruction 

The Problem:
oInput: 𝑀𝑀1,𝑀𝑀2, … molecules
oModel
 PM Learned molecular generative model
Generation: 𝑀𝑀 = 𝑓𝑓−1(𝑍𝑍), 𝑍𝑍 follows isotropic Gaussian
Reconstruction: 𝑍𝑍 = 𝑓𝑓 𝑀𝑀 and 𝑀𝑀 = 𝑓𝑓−1(𝑍𝑍)
oGoal: To generate valid & unique & novel molecules

Datasets:
o

#Graphs #Nodes #Node/Atom 
Types

#Edge/Bond 
Types

QM9 134K 9 4 3

ZINC 250K 38 9 3

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 35



EXP1: Molecular Generation & 
Reconstruction 

Evaluation metrics:
1. Validity: %chemically valid molecules in all the generated 

molecules
2. Validity without check/correction
3. Uniqueness: %chemically valid and unique molecules in all the 

generated molecules
4. Novelty: %generated valid molecules not in training dataset
5. Reconstruction rate: % training dataset which can be 

reconstructed from their latent representations
6. N.U.V.: %novel, unique and valid molecules in all the generated 

molecules
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EXP1: Molecular Generation & 
Reconstruction 

 More novel & unique 
& valid molecules
o than previous models

 100% Reconstruction
oStrict superset of training 

dataset

 Better validity 
without check
oThan AR models. One-

shot models, a holistic way

 Our MoFlow
represents and 
explores the chemical 
space better!
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EXP2: Visualization of latent space

38

Embedding molecular 
graphs into continuous 
latent space
oGrid interpolation around one 
seed molecule
Smooth latent space  Similar 

chemical structures (Tanimoto
similarity)

oLinear interpolation between 
two molecules
Changing trajectory from one to 

another



EXP3: Property Optimization 
To Generate Novel

Molecules with the best 
Quantitative Estimate 
of Druglikeness (QED) 
scores as many as 
possible
oSearching latent space by 
gradient ascend

Much more molecules 
with top QED scores
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EXP3: Property Optimization 
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EXP4: Constrained Property Optimization 
Find a new molecule 𝐌𝐌𝐌 from a seed molecule 𝐌𝐌
oTo maximize: Similarity(𝐌𝐌, 𝐌𝐌′) and Y 𝐌𝐌′ − Y(M)
Tanimoto similarity of Morgan fingerprint
Target property Y: penalized logP (plogP), the octanol-water partition 

coefficients (logP) penalized by the synthetic accessibility (SA) score and 
number of long cycles.
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EXP4: Constrained Property Optimization 
Best similarity
Second best 

improvement
AR+RL model 

tends to generate 
long chains
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EXP4: Constrained Property Optimization 
CN1CC[NH+](C)CCN(C)CC[NH+](C)CCN(C)CC[NH+](C)CC1

C=C(C)C[N+](=C)CCN(C)C=CC(C)C=CN(C)CC

PlogP: -49.7182

PlogP: -1.849

+47.87

COc1ccccc1C(=O)OC1=CC=C2C(C1)C(C)=CC(C)(C)N2C(=O)C=O

COc1ccccc1C(=O)Oc1cc2c3c(c1)C(C)=CC(C)(C)N3C(=O)C2=O

PlogP: -15.962

PlogP: -0.11607
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Summary
Novel MoFlow model
oA variant of Glow for bonds
oNovel Graph conditional flow for atoms given bonds
oNovel validity correction
oInvertible, fast inference and generation at one shot
The state-of-the-art results
oBest results for generation and reconstruction 
w.r.t. novelty, uniqueness, validity, and reconstruction rate
oBest results for QED property optimization
More drug-like molecules
oBest similarity scores for constraint optimization and second best 
improvement scores for plogP
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This Tutorial
Molecular Graph Generation: to generate novel molecules with 

optimized properties
oGraph generation
oGraph property prediction
oGraph optimization
Learning Dynamics on Graphs: to predict temporal change or final 

states of complex systems
oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression
Mechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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Part 1:
MoFlow: An Invertible Flow Model 
for Generating Molecular Graphs

Chengxi Zang and Fei Wang
Weill Cornell Medicine

www.calvinzang.com
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Differential Deep Learning on 
Graphs and its Applications

Chengxi Zang and Fei Wang
Weill Cornell Medicine

www.calvinzang.com
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Thank You!

http://www.calvinzang.com/

	幻灯片编号 1
	This Tutorial
	This Tutorial
	幻灯片编号 4
	Background: Drug Discovery
	Challenges of Drug Discovery
	Challenges of Drug Discovery
	Challenges of Drug Discovery
	Drug Discovery Driven by Data and AI
	Problem Definition
	Related Works
	Related Works
	Related Works
	Related Works
	Related Works
	Related Works
	Our Choice
	Related works: Basics of Normalizing Flow
	Related works: NICE Model
	Related works: RealNVP Model
	Related works: Glow Model
	Why Flow Frameworks
	Why Flow Frameworks
	Our MoFlow Model
	Our MoFlow Model
	The Generative Framework
	A variant of Glow for Bond
	Graph Conditional Flow For Atoms
	Molecular Graph Generation
	Graph Property Prediction
	Molecular Graph Optimization
	Validity Correction
	Experiments
	EXP1: Molecular Generation & Reconstruction 
	EXP1: Molecular Generation & Reconstruction 
	EXP1: Molecular Generation & Reconstruction 
	EXP2: Visualization of latent space
	EXP3: Property Optimization 
	EXP3: Property Optimization 
	EXP4: Constrained Property Optimization 
	EXP4: Constrained Property Optimization 
	EXP4: Constrained Property Optimization 
	Summary
	This Tutorial
	幻灯片编号 48
	幻灯片编号 49

