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This Tutorial

WMolecular Graph Generation: to generate novel molecules with
optimized properties
oGraph generation
oGraph property prediction

oGraph optimization

dLearning Dynamics on Graphs: to predict temporal change or final
states of complex systems

oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression

JMechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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Background: Drug Discovery

° Lead -
Lead Discovery e Preclinical O
Optimization o f’mlat". |
1.5 vears inical tria
1.5 yea ) 3 yea rs y 4-7 years
. Screen millions of Design, make, test iy .
.— / - functional 1000s new In \(/el)’zroe:\irr\ndelr:\tsv.lvo Phase |, Il,
ol molecules to inform molecules with spnthesis ’ I, Launch
\% design optimized property Y

Nature Biotechnology 2019
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Challenges of Drug Discovery

Lead Discovery Lead Preclinical for
Optimization human
1.5 years inical tri

1.5 years 3 years \ Clinical trial

1. Lengthy, costly, & with high failure rate

... 01.5+3+1.5 =6 years before clinical trail
SRR 033% of total cost of medicine development

= = = === OClinical success ~12%, poor translation in

S ETT patients
nch [copitaliced)  [[5 g 7 | [m G s s | S
o ez OHOW to accelerate the process and reduce
the cost and failure rate of such a sequential
pipeline?

Ngture 2010
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https://www.nature.com/articles/nrd3078.pdf

Challenges of Drug Discovery

Lead Discover .Le.ad . Preclinical Molecule for
Optimization human
15 yea IS 3 years 1.5 Years Clinical trial

J2. Big Chemical Data but largely
unexplored

OThe scale of potential drug-like chemical
data: 1033~ 10°°

0Sampled points in existing chemical
database: 10°

OHow to explore such a big chemical space
and generate novel molecule candidates?

Ngture 2017
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https://www.nature.com/news/the-drug-maker-s-guide-to-the-galaxy-1.22683

Challenges of Drug Discovery

Lead Discovery ,Le?d : Preclinical Molecule for
Optimization human
15 yea rs 3 years 1.5 years Clinical trial

| 3. Evaluation and optimization over
Functional space | Direct Inverse Inverse Sequence or graph S

ﬁ u ODiscrete Molecule Data: smiles -> sequence,
Desired properties (redox
potential, solubility, toxicity) | i

molecular graphs -> graph, etc.
OEvaluation: Mapping from discrete molecules to

simulation (Schrodinger screening (e.g., with 3 evolutionary strategies,

i equation) filtering stages) generatgﬁmézﬁls (VAE, p ro p e rt i e S .
vy vl ! %t w}‘_q OOptimization: Generating novel molecules with
aﬁgﬁ W ﬁgw& %@ﬁw optimized propertles:. _
e e | T OHow to search for discrete molecules guided by
the target property in the chemical space?

1

Experiment or High-throughput virtual

polymers, dyes) P e

Sq’ence 2018
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https://science.sciencemag.org/content/361/6400/360

Drug Discovery Driven by Data and Al

Deep Learning methods driven by
Challenges data

OHow to accelerate the process and :
reduce the cost and failure rate of such a »OBetter than human dlscovery, hOper”y

sequential pipeline?
OA generative model which

OHow to explore such a big chemical space» approximately representg the Iarge
. 5 _
and generate novel molecule candidates: chemical space

OHow to search for discrete molecules _ _
guided by the target property in the »oSearch algorithm between the chemical

chemical space? space and property space.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 10



Problem Definition

dinput:
o{M, M,, ..., My }. Molecule data samples
of (M): Some property functions of molecules

dMethod:
oM~Py (M) : A generative model (distribution) of molecules
oSearching molecules in Py (M) guided by f(M).

J1Output:
oNovel molecules {My 1, My.», ... } With desired properties.

EEEEEEEEEEEEEEEEEEEEEEE G ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Related Works

dSequence-based VAE model
oSMILES (Simplified molecular-input line-entry system) string
oGrammar Variational Autoencoders (Grammar-VAE)
oLimitation: Sequences lose structural information

O SMILES grammar ~ form parse tree extract rules convert to 1-hot vectors —~ map to latent space
1 3 4 5 B
’
A l e smiles —= chain [ EEEEEEEEEEE @
bbbbbbbb -
N OH _chain_
I\ i branched
chain branched -
N N o . chain — ranche (I
AN / atom aromatic organic branched . branched atam, ri
—_— , ringband
o dom T demaic onane SR input SMILES | | 30 t NS EEEEEEEEE )
aromatic
F ringbond —» digit S atom —— OIS EEEEE EEEEEEE
aromatic organic ¢ romal
3 dphatc organc —o- L e —> EEEEEEEE EEE
phat anic romati .
aliphatic organic _— rganic digit "cleccecl’ ringbond —— digit [(TITII | mE
3 o — 1 . s —s =TT U m \
B digit —— 2 1
N 8] -
W4
lN N 3 N pop first sample rule &  conca tenate
,—-" — [s] map from latent space convert to logits stack non-terminal mask out invalid rules push non-terminals terminals
E 2 ® @ 2 onto stack (®) ‘eeceeer
h = = = chain
chain,  Dranche chain
c e et
a to
;I TTTTTTITTT . - translate
& o ringband = = T T I T T I TIT11] .mgbona_—- aaaaa @molecule
I I P T T T LT T LT L LT T E L E T TP
' . 4 —
b . PRI O
' - N
n

N1CCN{CC1)C(C{F)=C2)=CC(=C2C4=0)N(CICC3)C=C4C(=0)0
i IS 1 -

Image from https://en.wikipedia.org/wiki/Simplified molecular- Image from: Kusner et al. 2017. Grammar VarlatlonﬂAutoencoder.
input line-entry system



https://arxiv.org/abs/1703.01925
https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

Related Works

0 O N/
dGraph-based VAE model e Sl
oStructural information of molecules is better e en2e OO O ecc(ecs e Cneze)
kept by g raphs Molecule Tree decompaosition

“E.g., similarity, chemical validity @jk |
oJunction Tree Variational Autoencoder (JT- ‘: f‘(_ Gl

VAE) 2°;zz2 ie:z?
oLimitation

“*Only for tree-structured molecules. crcode | (50022) crcode ls 2
< Ciclosporin: Large circle SORRPe T e

HN o .-K(O o] |
s .~ Decode
\MEIN/ L); )\ HNI O H \ /
OH A~ /o | w7 (Sec 2.5)
_N - N NTH cl
TV

Image from: Jin et al. 2018. Junction Tree

https://en.W|k|ped|a.org/W|kl/C|C|OSp0r|n Variational Autoencoder for Molecular Graph

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 Generation. ICML 13


https://arxiv.org/abs/1802.04364
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Related Works

JGAN-based models
oMolecular Generative adversarial network (MolGAN)

oLimitation

“*No chemical validity guarantee; Mode collapse->tend to generate duplicated
molecules - few novel molecules

Adjacenc y tensor A Sampled A Graph
“W@ =) “\ﬁ 9y

1= or
— g m—
/\\ \ N J \ N .
Sampled X
z ~plz) 7 ~ - . .
I [l 0
- u | NH
. Il\ A i v

T

™y
|_ GCHM J|
J

Molecule

Image from: De Cao et al. 2018. MolGAN: An implicit generative model for small molecular graphs
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https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1805.11973

Related Works

JAutoregressive-based models

oGraph Convolutional Policy Network (GCPN)
oGraph Autoregressive Flow model (GraphAF)
oReject sampling for validity + Reinforcement Learning for

optimization
oLimitations

“*Sequential generation, tend to generate Iong chams

Y Step reward
[0 | Final reward
[0]Stop

n
- © [0]NodelD /
” Sample NdID:> d
v = Moo
" m

3 [[0.1] step reward
[1 ] Final reward

n
© }
u " A Sample [4]NodelD Act render
® o= [BlNodelD 5 Env
n EdgeType ate
[1]stop

(b) GCPN — my(a,|G; U €)  (c)Action —

(a) State — G,  Scaffold — C

Tg  P(GraalGrar)

(e) State — G4y

(f) Reward — 1,

Image from: You et al. 2018. Graph Convolutional Policy Network

for Goal-Directed Molecular Graph Generation. NeurlPS

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS ---

7 b ] B
X [ ] [ ] A HE) R
T ! i N
===+ Noise from N(0,I) [ [',I ] [} ] ™ /
@ Node: Atom Eﬂ* T © " Parallel Training
——— Edge: Single bond 5 JT ? 12.23 11.29
Edge: Double bond @ — —
............. G
—— Affine Transformation for Node Generation Ea3 +[L Tzl H E721 >//L‘x\\ /
=== Affine Transformation for Edge Generation _ _ -
Sampling / Training Order @ ?quenﬁal Sampling 11.05 10.83

(a) Sampling Phases (b) Framework

Image from: Shi et al. 2020. GraphAF: a Flow-based
Autoregressive Model for Molecular Graph Generation. ICLR
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Related Works

JFlow-based models
oGraphNVP: Graph Real-valued Non-Volume Preserving flow
“+*Only use add coupling
oLimitations

“*Unstable deep structures, No chemical validity guarantee, Few novel
molecules

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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https://arxiv.org/abs/1905.11600

Related Works

Classified by Data:
oSequence: SMILES
oGraph: molecular graphs

JClassified by Deep Generative Models:
oAutoregressive Models (AR)
oVariational Autoencoders (VAE)
oGenerative Adversarial Networks (GAN)
oNormalizing Flow Models (Flow)

Classified by Search & Optimization
oGradient ascend
oReinforcement learning

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 17



Our Choice

Classified by Data:
oSequence: SMILES
oGraph: molecular graphs

JClassified by Deep Generative Models:
oAutoregressive Models (AR)
oVariational Autoencoders (VAE)
oGenerative Adversarial Networks (GAN)
oNormalizing Flow Models (Flow)

Classified by Search & Optimization
oGradient ascend
oReinforcement learning

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 18



Related works: Basics of Normalizing Flow

P(X):

JAn invertible generative model S
Complex empirical distribution

oGoal: X~P(X)

dInference:Z = fy(X)
oFrom complex to simple, e.g. Z is Gaussian

d Generation:X = f; 1(2)
oGenerate complex by invertible mapping

J Exact Maximum Likelihood Training Inference‘ t Generation
oChange of variable log P(X) = log P(Z) + log | det( ) | P(2):
oargmax Ey..p, . [log Py (M; 6)] Simple latent distribution
0

J Network structures:
0fg: invertible DNNs, each layer is invertible

oComputing det(%e) should be efficient

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.
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Related works: NICE Model

 NICE: Non-linear Independent Components Estimation
o splitting dimensions + residual flow updated alternately

0 Split: Z=(21,25)

O X= (X]_,Xz)

o0Z = (24,12
(Z1,Z3) Hamiltonian Systems

d Add: -
0Z, = X, (save information for reverse) dZ4
0Z, =X, + fo(X;) (Residual) dt fH (ZZ)
o Reverse mapping: XL layerns X » =[
L % X4 4221 fe(Z1)

’:’Xl :Z1
“X2 =25 —fo(Z1) | dt _
d Next layer by alternating update:
OZI = X1 + fg(Xz) (ReSiduaI)
0Z, = X, (save information for reverse)

X = (XIJXZ)

a ...
Dinh et al. 2014. Nice: Non-linear independent components estimation Chen etal. 2019. Neural Ordinary
Dinh et al. 2017. Density Estimation using Real NVP. ICLR. Differential Equations. NeurlPS.
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http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf

Related works: RealNVP Model

J RealNVP: Real-valued Non-Volume Preserving flow
o splitting dimensions + affine updated alternately

0 Split: Z=(21,25)

O X= (X]_,Xz)

1= (721

0 _ 1 22) f S Hamiltonian Systems
ad Affine: ’ ) ]
0Z, = X, (save information for reverse) dZ4

0Z, = X,e%0X1) + f (X,) (with scale) dt fH (ZZ)

0 Reverse mapping: XL layerns XZ » d =

Z;

L 1 azz1 fe(Z1)

’:‘Xl = Zl
Xy = e00D[Z, — f(Zy)] - dt

 Next layer by alternating update:
0Z, = X,e50X2) + f,(X,) (Residual)

0Z, = X, (save information for reverse) _

Dinh et al. 2014. Nice: Non-linear independent components estimation Chen etal. 2019. Neural Ordinary
Dinh et al. 2017. Density Estimation using Real NVP. ICLR. Differential Equations. NeurlPS.
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https://arxiv.org/abs/1605.08803
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf

Related works: Glow Model

J Glow: Generative flow with invertible

1*1 convolutions Z =
J Acthorm: f
o Stable dynamics !
OB = B;“ each channel over batch 1
o“+e€

. Invertible 1*1 convolution: L

0 Expressive power Invertible
0 REXMXN 5 REXC _y REXNXN l*lonv

J Affine:
0Z1 =X, XL layers T
0Z, = Xzese(xl) + fo(X1) X _ (Xl Xz)

Kingma et al. 2018. Glow: Generative flow with invertible 1x1 convolutions. NeurlPS.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

Hamiltonian Systems

dZy

d
Qd_ztz

| dt |

=1

fo(Z3)
fo(Z1)

Chen et al. 2019. Neural Ordinary
Differential Equations. NeurlPS.
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Why Flow Frameworks

dinvertible mappings
oPotentials for generating more molecules
oVAE, GAN, AR are not invertible
oFlow learns a strict superset and represents chemical space better

L N

, GAN, AR Training
Model Data

Training

Training
Data

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-202 . 23



Why Flow Frameworks

dExact maximum likelihood training
OoVAE,GAN are not

JEfficient one-shot inference and generation
oCapturing molecular structures in a holistic way
OAR Is step-by-step

dBetter performance shown later

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Our MoFlow Model

JMolecular Graph

OMolecules consist of atoms and bonds
oMolecule = (Atom, Bond)

oAtom € {0,1}***, n Nodes in k (atom) types
oBond € {0,1}¢*™*" Edges in ¢ (bond) types

[T T T T

————— — — — —

EEEEEEEEEEEEEEEEEEEEEEE G ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

EEEEEEE
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Our MoFlow Model

IMoFlow:

oMolecule=(Atom, Bond) How to model intrinsic atom-bond
structures of molecule?

0Py (M) = Py((A,B)) ~ P, p(A|B)Pg(B)

oAny flow model fz(B) for bonds Pz (B)
“*Generating graph skeleton by P;(B)

oGraph conditional flow f4,5(A|B) for atoms given bonds P,z (A|B)
<*Generating nodes given graph skeleton by P, z(A|B)
oAssembling atom and bonds with validity correction

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 26



The Generative Framework

Inference Latent Space Generation
CNOF* () N CNOF*
A I >| : : Reverse :

GCF

| Z B
Graph Conditional f§|13 \
1] X Flow fAlB T ! ?I Yo
Validity NG / 7 |
‘ Correction i ;/\m - I

r===r
W ’H 4T i Reverse
@ | Glow

Glow fp N(‘u,*azl) fz'
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A variant of Glow for Bond

O Squeeze

0XE€ chnxn N RCkZX%Xk

O Actnorm:
o Stable dynamics

B—u
OB = each channel over batch
vo2+e

d Invertible 1*1 convolution:
0 Expressive power

o chnxn X RCXC N chnxn

O Split:
o Discretization of Hamiltonian system
0 B= (B1; BZ)

0 Z = (Zgy,2p)

d Affine coupling:
o Stable (batchnorm2D, Sigmoid) and expressive power (Affine)

0 Zpy =B,
(0] ZBZ = Bz®Sigm0id(Sg(B1)) + Tg(Bl)

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020

XL

layers

Zg =1‘ (B4, ZBZ)

Z

S(B1),T(B1)

B
Affine Coupling |

Invertible
1*1 Conv

(
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Graph Conditional Flow For Atoms

O Actnorm2D: ZA|B = (A1:ZA2|B)
o Stable dynamics

— J)

oB=\/%each row over batch Zr, 5 S(A4|B)
Q split: 4,08

. o i ing
0 Discretization of Hamiltonian system on Graphs Affine couleg
0 A= (4, A,) by each row

0 Z = (Za1|B, Za2|B)

d Graphnorm |
sraphnorm _ XL layers A, <
0 B;=D""B;, D =}.;B.,;; in-degree over all channels Batchnorm

3 GraphConv(A|B) ()

0, Bi(MO AW+ (MO AW, A4 ¥,

0 update each row by the remaining rows -'F CNOF* /
O Affine coupling: B

o Stable (batchnorm, Sigmoid) and expressive power (Affine) T

© Zaup =

0 Zuzp = A,@Sigmoid(Se(A,|B)) + To(A1|B) A — $
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Molecular Graph Generation

Inference Latent Space Generation
CNOF* () N CNOF*
A I >| l : : Reverse :

GCF

ZjB
/ Graph Conditional f5|13 \
| oo ) Flow f o B
AL, (A

Reverse
Glow

Glow fp N(‘u,*azl) fz'
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Graph Property Prediction

Inference Latent Space Regression

A E —
I
- y(z)

.
Graph Condltlonal
] — —— Properties

Glow fg  N(u 621

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Molecular Graph Optimization

Inference Latent Space
CNOF* ( 75\\ B
II [ L N
A >| l ' ] Reverse
I | GCF

I ZaB
Q==

Graph Conditional

Flow fAIB

Glow f5 Ny, o21)

-1
fB

-1
fajB

|

> Reverse

Glow

Y(2)

MLP

R

Generation

CNOF*

I T

Validit R
Co:'rtleclti:;n ] {\} /\m /l\wl
S

/

Properties

32



Validity Correction

dValid molecules: valency constraints
02 ;B(c,i,j) < Valency(Atom;) + Formal_Charge

0C: 4, O:2, O+:3

JValid Correction

oWhile checking valency constraints:
**If follows constraints:

> Return the greatest connected component

»Else:

> Delete unnecessary bond or add charge to atoms according to rules

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Experiments

> W e

Molecular Generation & Reconstruction
Visualization of Continuous Latent Space
Property Optimization

Constrained Property Optimization

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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EXPL. Volecular Generation &«
Reconstruction

dThe Problem:
olnput: {M,, M,, ... } molecules

oModel

*» Py Learned molecular generative model
<Generation: M = f~1(2), Z follows isotropic Gaussian
<*Reconstruction: Z = f(M) and M = f~1(2)

oGoal: To generate valid & unique & novel molecules

- et I S R
Types Types
O
QMv9 9 4 3

134K

ZINC 250K 38 9 3

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 35



EXPL. Volecular Generation «
Reconstruction

JEvaluation metrics:

1. Validity: %chemically valid molecules in all the generated
molecules

2. Validity without check/correction

3. Uniqueness: %chemically valid and unigue molecules in all the
generated molecules

4. Novelty: %generated valid molecules not in training dataset

Reconstruction rate: % training dataset which can be
reconstructed from their latent representations

6. N.U.V.: %novel, unique and valid molecules in all the generated
molecules

o1

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 36



EXPL. Volecular Generation &«
Reconstruction

d Mo ren ovel & uni gque Table 1: Generative performance on QM9
& valid molecules
othan preViOUS models % Validity % Validity w/o check % Uniqueness % Novelty % N.U.V. % Reconstruct
. GraphNVP 83.1+0.5 - 99.2+0.3 58.2+1.9 47.97 100
d 10_0% Reconstru_c_tlon GRF 84.5 % 0.70 - 66.0+1.15  58.6+0.82 32.68 100
0 Strict superset of training  GraphAF 100 67 94.51 88.83 83.95 100
dataset MoFlow 100.00 + 0.00 95.74 + 0.65 99.48 + 0.33 98.69 +0.39 98.18 +0.53 100.00 £ 0.00
J Better validit _ .
W | t h out ¢ h ec Table 2: Generative performance on Zinc250k
o Than AR models. One-
shot models, a holistic way % Validity % Validity w/o check % Uniqueness % Novelty %N.UV. % Reconstruct
JT-VAE 100 - 100 100 100 76.7
d ->Our MoFlow GCPN 100 20 99.97 100 99.97 -
represents and MRNN 100 65 99.89 100 99.89 .
exp|ores the chemical GraphNVP 426+ 1.6 - 94.8 + 0.6 100 40.38 100
Space better! GRF 73.4 £ 0.62 - 53.7 £ 2.13 100 39.42 100
GraphAF 100 68 99.10 100 99.10 100
MoFlow 100.00 + 0.00 81.94 + 0.45 99.94 + 0.05 100.00 £ 0.00 99.94 + 0.05 100.00 + 0.00
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EXP2: Visualization of latent space

‘gw%i QJ% fr‘J\%{ ﬁ¢%{ ﬁw%t pn:rg n:{g );;r:rg ;b.np?.?

0.42 0.41 0.38 0.32 0.44 0.37 0.37 0.37 0.31

VR Vet WPt WPt W v S v S B S

JEmbedding molecular
»8

graphs into continuous —— |
I at e n t S p aC e ﬂmu? _& Y"(LH“ o.s . 0.5? 0.4 o |

T .00

. . . » > > > > BY 22 » Be v
oGrid interpolation around one  #7% #7¢ #7¢ # b b b 2 TE 270 20 W
seed molecule =% % % 7% _ﬁ@ 2% =% % 2%
,:,Smooth Iatent Space é% Slmllar 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 04{)%
oL PO O PO O Fo % Soal % ped “’L"Q;d - F

Slml|ar|tY) Qo O« O« PO« 0« o Dot ‘qﬁki?) ‘q_;.i?j
oLinear interpolation between ﬁ

o Yo QO YO O O QO GO Q)

chemical structures (Tanimoto B S SO el A S

two molecules
“*Changing trajectory from one to 3o Po o Fol o0 O o Fou §oc
another ey —— P —— p— e —— N

QQro::r T YO S T Do SHo- S S [
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EXP3: Property Optimization

JTo Generate Novel

M O I ecu I es w | t h t h e b est Table 3: Discovered novel molecules with top QED score. Our

MoFlow finds more molecules with the best QED score. More

Quantitative Estimate  resultsin

of Druglikeness (QED)

Method 1st 2nd 3rd 4th
S C O reS aS m an y aS ZINC (Dataset) 0.948 0.948 0.948 0.948
possible JT-VAE 0.925 0.911 0.910
oSearching latent space by Vo oo
gradient ascend GraphAF 0.948 0948 0947 0946
MoFlow 0.948 0.948 0.98 0.948

JdMuch more molecules
with top QED scores
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EXP3: Property Optimization
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EXP4:. Constrained Property Optimization

dFind a new molecule M’ from a seed molecule M
oTo maximize: Similarity(M, M") and Y(M') — Y(M)
“*Tanimoto similarity of Morgan fingerprint

“*Target property Y: penalized logP (plogP), the octanol-water partition
coefficients (logP) penalized by the synthetic accessibility (SA) score and
number of long cycles.
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EXP4:. Constrained Property Optimization

7.98 7.48

1Best similarity
J1Second best

Improvement
JAR+RL model

tends to generate

long chains

A

7.12

GCPN

SE N

SN

) I A=

T
TAV

23.88*

_ 05

Table 4: Constrained optimization on Penalized-logP

JT-VAE GCPN
o Improvement Similarity Success Improvement Similarity Success
0.0 1.91+2.04 0.28 £0.15 97.5% 4.20+£1.28 0.32+£0.12 100%
0.2 1.68 +1.85 0.33+£0.13 97.1% 4.12+1.19 0.34+0.11 100%
0.4 0.84 +1.45 0.51+£0.10 83.6% 2.49 +£1.30 0.48 +£0.08 100%
0.6 0.21+0.71 0.69 +£0.06 46.4% 0.79 +£0.63 0.68 +£0.08 100%
GraphAF MoFlow
o Improvement Similarity Success Improvement Similarity Success
0.0 13.13 +6.89 0.29 +£0.15 100% 8.61 +5.44 0.30+£0.20 98.88%
0.2 11.90 + 6.86 0.33 +£0.12 100% 7.06 +£5.04 0.43+0.20 96.75%
0.4 8.21+6.51 0.49£0.09  99.88% 4.71 £ 4.55 0.61+0.18 85.75%
4.98 + 6.49 0.66 £0.05  96.88% 2.10 + 2.86 0.79+0.14  58.25%

12.23 11.29

>/ “x./

11.05 " 10.

GraphAF

83

—

+16.48
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EXP4:. Constrained Property Optimization

CN1CC[NH+](C)CCN(C)CC[NH+](C)CCN(C)CC[NH+](C)cC1 COclcceecclC(=0)0clcc2c3c(c1)C(C)=CC(C)(C)N3C(=0)C2=0

\/\N,H PlogP: -49.7182 Q. 0 PlogP: -15.962

H +47.87l oo “ +15.851
. -
K\ PlogP: -1.849 @i | PlogP: -0.11607
N

AN Cir
H N\ 0 N
| | |
\H/\ﬁ/\/“\/\r\\/”\/ H\o

C=C(C)C[N+](=C)CCN(C)C=CC(C)C=CN(C)CC COclccccc1C(=0)0C1=CC=C2C(C1)C(C)=CC(C)(C)N2C(=0)C=0
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Summary

JINovel MoFlow model
oA variant of Glow for bonds
oNovel Graph conditional flow for atoms given bonds
oNovel validity correction
olnvertible, fast inference and generation at one shot

JThe state-of-the-art results

oBest results for generation and reconstruction
“*Ww.r.t. novelty, uniqueness, validity, and reconstruction rate

oBest results for QED property optimization
“*More drug-like molecules

oBest similarity scores for constraint optimization and second best
Improvement scores for plogP

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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This Tutorial

WMolecular Graph Generation: to generate novel molecules with
optimized properties
oGraph generation
oGraph property prediction

oGraph optimization

dLearning Dynamics on Graphs: to predict temporal change or final
states of complex systems

oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression

JMechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 47
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Thank You!
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