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This Tutorial

dMolecular Graph Generation: to generate novel molecules with
optimized properties
oGraph generation
oGraph property prediction

oGraph optimization

W_earning Dynamics on Graphs: to predict temporal change or final
states of complex systems

oContinuous-time dynamics prediction
oStructured sequence prediction
oNode classification/regression

JMechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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Structures and Dynamics of Complex Systems

Brain and Bioelectrical flow _Transportation and Traffic flow

Social Networks and Information flow Ecological Systems and Energy flow
; o7 s i
’?\3 e —_ _Piscivores
T LY . 5 xeil ., MIF
. VA u} Coselvores _")

i\ a.\/”” i el S
n ‘:F —Corals ){ o s
B ———

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 5



Problem: Learning Dynamics of complex systems

Brain and Bioelectrical flow _Transportation and Traffic flow
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Problem: Math Formulation

dLearning Dynamics on Graph

oDynamics of nodes: X(t) € R™¢ at t, where n is number of nodes,
d 1S number of features, X(t) changes over continuous time t.

oGraph: ¢ = (V,E), V are nodes, E are edges.
dx(

oHow dynamics Tt) = f(X(t),G,0,t) change on graph?
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Problem: Prediction Tasks

d Continuous-time network dynamlcs predlctlon

olnput: G, {X(t1), X(t5), ., X(tp)|0 < t; < - < tp}, ty < -+ < tr are arbitrary time
moments
0?A model of dynamics on graphs = f(X(t),G,0,t)

oOutput: to predict X(t) at an arbltrary time moment
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Problem: Prediction Tasks

d Continuous-time network dynamlcs predlctlon

olnput: G, {X(t1), X(t5), ., X(tp)|0 < t; < - < tp}, ty < -+ < tr are arbitrary time
moments
0?A model of dynamics on graphs = f(X(t),G,0,t)

oOutput: to predict X(t) at an arbltrary time moment

J(Special Case) Structured sequence prediction
olnput: G, {X[1],X[2], ..., X[T]|0 < 1 < - < T}, ordered sequence

0? A model of dynamlcs on graphs = f(X(t),G,0,t)
oOutput: to predict next k steps X|[T + k]

J(Special case) Node (semi-supervised) regression/classification
olnput: G, X = [X, Mask © Y] features and node labels, only one snapshot
0? A model of dynamics on graphs X(t) = f(X(t),G,0,t)
oQutput: to predict [X, Y]
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Why Dynamics Matter?

JTo understand, predict, and control real-world
dynamic systems in engineering and science.
oBrain dynamics, traffic dynamics, social dynamics
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Challenges: Dynamics of Complex Systems

JComplex systems:
oHigh-dimensionality and
Complex interactions
0= 100 nodes, = 1000 interactions

dDynamics:
oContinuous-time, Nonlinear

JdStructural-dynamic
dependencies:

oDifficult to be modeled by simple
mechanistic models
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Challenges: Dynamics of Complex Systems

JExamples of dynamics on graphs

ﬁ 4+ Linear Dynamics 9
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Related Works 1: Learning Continuous Time

Dxnamics

JTo learn continuous-time dynamics

OA clear knowledge of the mechanisms, small systems, few interaction terms,
first principle from physical laws, mechanistic models,

ATOMIC &
MOLECULAR PHYSICS
2
Macro: p= 40 Micro: o ¥(rt)= |5V’ +Vro|¥r)  Chaos: Y-z(p-2-u
dt T
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Data-driven Dynamics for Small Systems

JData-driven dlscovery of ODEs/ PDEs

oSparse Regression el (FRi (137 idmes S aes

& o= oy —x)

oResidual Network
oEtc.

dSmall systems!

0<10 nodes & interactions — N et

i = 0"

oCombinatorial complexity | il |
oNot for complex systems | \

IL. Sparse Regression to Solve for Active Terms in the Dynamics

Image from: Brunton et al. 2016. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. PNAS
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https://www.pnas.org/content/113/15/3932.short

Related Works 2: Structured Sequence Learning

dDefined characteristics

oDynamics on graphs are regularly-sampled with same time
Intervals

JdTemporal Graph Neural Networks
ORNN + CNN

oRNN + GNN
S X[t+1]=LSTM(GCN([t], G))

dLimitations:
oOnly ordered sequence instead of continuous physical time

Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 17



https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf

Related Works 3: Node (Semi-supervised)
Classification/Regression

dDefined characteristics
oOne-snapshot features and some labels on graphs
oGoal: to assign labels to each node

JGraph Neural Networks

0GCN, Z = f(X,A) = L;{'thl'nax(ﬁ RPLU(AX'[-’V{H}) W'[lj)
0GAT, etc. R |
B = o 1 3 o Wk
JdLimitations " (IZZ o “)

ol or 2 layers

oLacking a continuous-time dynamics view
“*To spread features or labels on graphs
“*Continuous-time: more fine-grained control on diffusion

Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks

Velickovic et al. 2017. Graph Attention Networks
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Goal: A Unified Framework for All?

 Continuous-time network dynamics prediction:
olnput: G, {X(t,), X(¢3), - X(tT)|O <ty < <tplt; <. < trare arbitrary time moments

o?Model: dynamics on graphs dit) = f(X(t),G,0,t)
o Output: to predict X(t) at an arbitrary time moment

- (Special case) Structured sequence prediction
olnput: G, {X[1],X[2], ..., X[T]|0 < 1 < - < T}, ordered sequence

0? Model: dynamrcs on graphs X — = f(X(1),G,0,t)
oOutput: to predict next k steps X|[T + k]

J (Special case) Node (semi-supervised) regression/classification
olnput: G, X = [X, Mask © Y] features and node labels, only one snapshot

0? A model of dynamics on graphs X(t) = f(X(t),G,0,t)
oOutput: to predict [X,Y]

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 19



Our ldeas

Differential Equation Systems

oGraphs and Differential Equations are general tools to describe
structures and dynamics of complex systems

Deep Learning

ORNN, GNN, Temporal GNN, Res-Net etc. are the state-of-the-art
computational tools driven by data

JHow to leverage Differential equation systems and
Deep Learning?
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Neural Dynamics on Complex Networks (NDCN)

[ Differential Deep Learning
oDifferential Equation systems: ax) _ fX(),GW,t)
is a graph neural network like stficture.
oDijfferential Deep model: X(t) =X(0) +
Jo f(X(2), G, W, T)dt for arbitrary time ¢
oLearned as following optimization problem:

r n
argmin L = / | X (t) — X (t)| dt
Wi ,bx 0

subject to X (t) = tanh (X(t)VVFj + be) Wo + bo

dXn(t)
dt
X (t) = X5 () Wy + by

— ReLU (@Xh(t)w n b) . X5 (0)

1 1
b =D 2 (D — A)D— 2 € RnXn DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020



Neural Dynamics on Complex Networks (NDCN)

X() Xp(t)

| dXp(t)
} J\dt

f Diffusion
_ CYESTE

1 Differential Deep Learnin%
oDifferential Equation systems: <=

= f(X(),GW, 1)

is a graph neural network like stficture.
oDijfferential Deep model: X(t) =X(0) +

Jo f(X(2), G, W, T)dt for arbitrary time ¢
oLearned as following optimization problem:

|

|

|

|

|

|

|

|

|

?:

argmin = X(t) — X (t)| dt |
e c /O| (1) — X{0)] :
|

|

|

|

|

|

|

|

Wi ,bx |

—

-

t+6

subject to X () = tanh (X(t)We n be) Wo + bo

dXp (t)
dt
X(t) = Xpn(t)Wyq + by

— ReLU (fI)Xh(t)W n b) X1 (0)

Xy (t + 8) = Xp(£) +f F(Xp, G,W,7) dt!
- _ S — 4

1 1
b =D 2 (D — A)D— 2 € RnXn DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 22



Interpretation from Residual Learning

dDeep Learning: f, Is a neural layer "

oEach layer: X[l + 1] = fi.1(X[I])
oDeep Model: X[L] = f; o --- o f1(X]0]),

JResidual Learning: deep
oEach layer: X[l + 1] = X][I] + fi4; X[1])

oDeep Model: X[L] = (f; +1) o -+ o (f;+1)(X[0]) N

X(t) X(t) Xn(t)
XU+ 1) - X dX(t) __ dX,(t)

————————————

______________

Differential Deep Learning: R L N K
oEaé:)p time moment (“layer”): Instantaneous rate at Residual DE system NDCN
t:—=f(X(t) T .
wEach Discrete layer vs. continuous time moment e L= /0 jx¢8) = X (2)| at
“*Neural mapping vs. Neural Differential Equation Systems subject to Xy (t) = tanh (X(t)We n be)WO 4 bo
oContlnuous time (“Deep”) Model: X(t) = X(0) + X5 (1)
f f(X(t), W, 1)dt Integration over continuous-time o = ReLU (8X0())W +b), X (0)

NA seguence of mappings vs. continuous integration
“*Trajectory of dynamics

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --

X(t) = Xn(t)Wa + ba
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Interpretation from Graph Neural Networks

(JGNN, Residual-GNN, ODE-

GNN, NDCN
OGNN Xt+1 — f(G,Xt, Ht)
oResidual-GNN: X;.1 = X; + (G, X;, 6¢)

o Differential-GNN: X;, s = X; +
6f(G,Xt, Ht);6 - 0

ax

’:’E = f(G;Xt; Ht)

JOur model 1s an Differential-

GNN with continuous layer
with real number depth.

X X(1) X(t) Xp (L)

_ dX(t) dX,(t)
Caom e o

—

t+68 t+8
XU+ =X+ frX) X(t+5)=X(t)+f fX,G,W,1)dt Xh(t+5)=Xh(t)+f fXp, G, W, D) dt

Residual Differential NDCN



Interpretation from RNN and Temporal GNN

JRNN, Temporal GNN and our model
ORNN or Temporal GNN
“ht = f(he-1,%:,0¢) orhy = f(hi—q, G * x¢,0;)
*y; = o(hy, we)
oResidual RNN or Temporal GNN with skip connection
““hy = heoq + f(heo1,x6,0¢) or he = heq + f(he—q, G * X, 0)

*ye = o(he, we)

oDifferential RNN or Differential GNN
dht = f(h¢, xe, 0¢) or — dht = f(he, G * x¢, 0¢)

”Yt = 0o(hg, we)
JOur model is an Differential GNN

**Learning continuous-time network dynamics
**Encompassing Temporal GNN by discretization
**Encompassing RNN by not using graph convolution
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Expl: Learning Continuous-time Network Dynamics

JThe Problem:
olnput: {X(t,), X(t2), .. X(tr)|0 < t; < -+ < tp}, t; < - <ty are
arbitrary time moments with different time intervals
oOutput: X(t),tis an arbitrary time moment
“*interpolation prediction: t < t; and # {t; < - < tr}
‘*extrapolation prediction: t > t;

JSetups:
0120 irreqularly sampled snapshots of network dynamics
oFirst 100: 80 for train 20 for testing interpolation
oLast 20: testing for extrapolation
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Canonical Dynamics on Graphs in Physics

and Biologx

JReal-world Dynamics on Graph (adjacency matrix A)

oHeat diffusion: ’;‘Et) —ky ;3 Ay (i (E) — §@®)
oMutualistic interaction: dx(0) — bl- + x;(t) (1 - xl(t)) (xi(t) - 1) +
n GRI0) a“ K/
j=1

LJ di+eixi(t)+hjxig t)

dxi(t) TRy
== b (D + 3, A

x;j(On
Y xit)h+1

dGraphs
oGrid, Random, power-law, small-world, community, etc.

dVisualizing dynamics on graph
oNodes are numbered by community labels

oMapped into a N2 grid
oX()1: N2 > R & &

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020




Expl: Learning Continuous-time Network Dynamics

JBaselines: ablation models
oDifferential-GNN
“*No encoding layer
oNeural ODE Network
“*No graph diffusion
ONDCN without control parameter W
“*Determined dynamics

Chen et al. 2019. Neural Ordinary Differential Equations. NeurlPS.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS ---

X(®) X Xp(t)
: - dX,(t)

|
T

t+8
X(t+8)=X(t) + f fX,G,W, ) dr Xyt + 8) = Xu(t) + f f(Xp, G,W,T)dr

Differential NDCN
T .
avri*/gj‘rfin L= /U | X (t) — X(t)| dt

subject to X, (t) = tanh (X(t)We + be)Wo + bo
dX;, (t)

dt
X(t) = Xh(t)Wd + by

= ReLU (@Xh(f,)w + b), X1(0)
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Expl: Heat Diffusion on Different Graphs
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Expl: Mutualistic Dynamics on Different Graphs
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Expl: Gene Dynamics on Different Graphs
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Expl: Results for Continuous-time Extrapolation

_1Mean Absolute Percentage Error
120 runs for 3 dynamics on 5 graphs
1Our model achieves lowest error

Table 1: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network dynamics ac-
curately. Each result is the normalized /; error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community
No-Encode 29.9 7.3 27.8 &£ 5.1 24.9 £ 5.2 24.8 & 3.2 30.2 £ 4.4
Heat No-Graph 30.5 1.7 58+ 1.3 6.84+ 0.5 10.7 £ 0.6 24.34+ 3.0
Diffusion No-Control 73.4 1 14.4 28.2 £ 4.0 25.2 + 4.3 30.8 £4.7 37.1 £ 3.7
[NDCN 4.1 +£1.2 4.3+ 1.6 4.9 £0.5 2.5+ 0.4 4.8+1.0 |
No-Encode  45.3 & 3.7 9129 200 £ 88 545 £ 3.6 [45E50
Mutualistic No-Graph 56.4 £ 1.1 6.7 £ 2.8 14.8 £ 6.3 54.5 = 1.0 9.5+ 1.5
Interaction No-Control 140.7 £ 13.0 10.8 £ 4.3 106.2 £ 42.6 115.8 £ 12.9 16.9 £ 3.1
(NDCN 26.7T 4.7 3.8+1.8 T4+ 26 14.4 + 3.3 36+1.5
No-Encode  3T.7 £ 14.1 175 13.0 33.7x9.9 255£7.0 26.3 £ 10.
Gene No-Graph 13.3 £ 0.9 12.2 £ 0.2 43.7 £ 0.3 15.4 £ 0.3 19.6 & 0.5
Regulation No-Control 65.2 4 14.2 68.2 4+ 6.6 70.3 7.7 58.6 £ 17.4 64.2 4+ 7.0
[NDCN 16.0 & 7.2 1.8+ 0.5 3.6 £0.9 4.3+0.9 2.5+ 0.6 |

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Expl: Results for Continuous-time Interpolation

dInterpolation is easier than extrapolation
J1Our model achieves lowest error

Table 2: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network dynamics accu-
rately. Each result is the normalized /; error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community
No-Encode 32.0 £ 12.7 26.7 - 4.4 25.7T + 3.8 27.9+ 7.3 35.0+ 6.3
Heat No-Graph 41.9 = 1.8 9.4+0.6 18.2+£ 1.5 25.0x 2.1 250+ 1.4
Diffusion No-Control 56.8 & 2.8 32.2 £ 7.0 33.5 4+ 5.7 40.4 £ 3.4 39.1 £ 4.5
NDCN 3.210.6 3.21+04 5.6 & 0.6 3.41+04 4.3+ 0.5
No-Encode 28.9 + 2.0 19.9 £ 6.5 34.5 £ 13.4 27.6 £ 2.6 25.5 £ 8.7
Mutualistic No-Graph 28.7+ 4.5 7.8+24 23.24+ 4.2 26.9 + 3.8 14.1 £ 2.4
Interaction No-Control 7224+ 41 225+ 102 G384+ 39 679+ 29 3394123
NDCN 7.6 +1.1 6.6 +24 6.5+ 1.3 4.74+ 0.7 7.9+ 2.9
No-Encode 39.2 + 13.0 14.5 + 12.4 33.6 + 10.1 27.7+ 9.4 21.2 +10.4
Gene No-Graph 25.2 £ 2.3 11.9 £ 0.2 394+ 1.3 15.7 £ 0.7 18.9 £ 0.3
Regulation No-Control 669 1+ 8 8 317+ 52 A0 3+ 6.6 4904+ R0 355+ 53
NDCN 581 1.0 1.5+0.6 29105 4.2+ 0.9 23106

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Exp2: Structured Sequence Prediction

JThe Problem (Structured sequence prediction):
olnput: {X[1],X[2], ..., X[T]|0 < 1 < - < T}, 1,..T are regularly-
sampled with same time intervals
“*with an emphasis on ordered sequence rather than time

oOQutput: X(t; + M), next M steps
“»extrapolation prediction

dSetups:
0100 regularly sampled snapshots of network dynamics
oFirst 80 for training, last 20 for testing

EEEEEEEEEEEEEEEEEEEEEEE G ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Exp2: Structured Sequence Prediction

dBaselines: temporal-GNN models
oLSTM-GNN
@ X[t+1]=LSTM(GCN([t], G))
0GRU-GNN
X[t+1]=GRU(GCN([t], G))
oRNN-GNN
“X[t+1]=RNN(GCN([t], G))

Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Exp2: Structured Sequence Prediction

JResults:
oOur model achieves lowest error with much less parameters

dThe learnable parameters:
oLSTM-GNN: 84,890, GRU-GNN: 64,770, RNN-GNN: 24,530
oNDCN: 901

Table 3: Regularly-sampled Extrapolation Prediction. Our NDCN predicts different structured sequences accurately. Each
result is the normalized ¢, error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each

method.

Grid Random Power Law Small World Community
LSTM-GNN 12.8 + 2.1 216 £ 7.7 12.4 £ 5.1 11.6 &+ 2.2 13.5 1+ 4.2
Heat GRU-GNN 11.2 £ 2.2 9.1 +2.3 8.8+1.3 9.3+ 1.7 7.910.8
Diffusion RNN.GNN 18 8L 549 25 0L 58 189 1+ 6.5 2181138 16100
NDCN 4.3+ 0.7 4.7+ 1.7 54104 2.7T1+04 5.3+ 0.7
CSTM-GNN Bl.4 T 3.3 24.2 T 24.2 270X 7.1 P8.2 T 2.4 25.0 £ 22.93
Mutualistic GRU-GNN 49.8 + 4.1 1.0+ 3.6 12.2 £ 0.8 51.1 + 4.7 3.7T+4.0
Interaction NN-GNN 56.6 + 0.1 244113 120+04 574419 R2+ 64
I_IETDCN 208+ 1.6 4.7+1.1 11.2+ 5.0 159+ 2.2 3.8+ 0.9
LSTM-GNN 27.7 £ 3.2 67.3 = 14.2 38.8 £ 12.7 13.1 x£ 2.0 53.1 = 16.4
Gene GRU-GNN 24.2 1+ 2.8 50.9 6.4 35.1 £15.1 11.1 + 1.8 46.2 + 7.6
Regulation NALGNN 28 0L G 8 565+ 57 42 0+ 128 140573 4654+ 35
NDCN 18.6 = 9.9 2.41+0.9 4.1+1.4 55+ 0.8 29105




Exp3. Node Semi-suprvised Classification

JdThe Problem:
oOne-snapshot case

olnput: G, X, part of labels Y (X)
oOutput: To Complete Y (X)

JDatasets:

0 Table 11: Statistics for three real-world citation network

datasets. N, E, D, C represent number of nodes, edges, fea-
tures, classes respectively.

Dataset N E D C Train/Valid/Test

Cora 2,708 5,429 1,433 7 140/500/1,000
Citeseer 3,327 4,732 3,703 6 120/500/1,000
Pubmed 19,717 44,338 500 3 60/500/1, 000

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Exp3. Node Semi-suprvised Classification

dBaselines
oGraph Convolution Network (GCN)  Z= (X, 4) = softmax( A ReLU(AXW® ) W)
oAttention-based GNN (AGNN) |
oGraph Attention Networks (GAT) i =0 (;z ) ai-;wkﬂj)

Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks

Velickovic et al. 2017. Graph Attention Networks
DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 39
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Exp3. Node Semi-suprvised Classification

dinterpretation of model

olnput: G, [X, Mask®Y], features and some node labels

oOutput: To Complete Y

oModel: A graph dynamics to spread features and labels over time T
w251 G, X, Y, W)

0.0

T T C .
argmin L= / R(t)dt — > > V; k(T)log Yik(T)
0

We,be ,Wq,bg i=1 k=1
subject to Xr(0) = tanh (X(U)WE + be)

dXp, (t)
dt
Y (T) = softmax (X (T)Wa4 + bg)

— ReLU (@Xh(t))
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Exp3. Node Semi-suprvised Classification

IMetrics

oAccuracy over 100 runs

JResults

oContinuous-time
dynamics on graphs
oBest results at time T=1.2
*»Continuous depth/time
oNot using dropout

Table 4: Test mean accuracy with standard deviation 1n per-
centage (%) over 100 runs. Our NDCN model gives very
competitive results compared with many GNN models.

Model Cora Citeseer Pubmed
GCN 81.5 70.3 79.0
AGNN 83.1 £0.1 71.7 £ 0.1 79.9 £0.1
GAT 83.0 £ 0.7 72.5+0.7 79.0 £ 0.3
NDCN 83.3 0.6 73.1£0.6 79.8 04
(a) Cora (b} Citeseer (c) Pubmed
- 0.7 - 0.80 i
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Figure 5: Our NDCN model captures continuous-time dynam-
ics. Mean classification accuracy of 100 runs over terminal
time when given a specific «. Insets are the accuracy over the
two-dimensional space of terminal time and «
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Summary

JOur NDCN, a unified framework to solve
oContinuous-time network dynamics prediction:
oStructured sequence prediction
oNode regression/classification at final state
good performance with less parameters.

Differential Deep Learning on Graphs

OA potential data-driven method to model structure and dynamics of
complex systems in a unified framework
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This Tutorial

dMolecular Graph Generation: to generate novel molecules with
optimized properties
oGraph generation
oGraph property prediction

oGraph optimization

W_earning Dynamics on Graphs: to predict temporal change or final
states of complex systems

oContinuous-time dynamics prediction
oStructured sequence prediction
oNode classification/regression

JMechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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This Tutorial

Jdwww.calvinzang.com/DDLG AAAIl 2020.html
JAAAI-2020

JdFriday, February 7, 2020, 2:00 PM -6:00 PM
:ISutton North, H|Iton New York I\/Ildtown NYC

Thirty-Fourth AAAl Conference on Artifi elal ln’relhgenae

Februany 712 2020, Hion New Yok Midown, New York, New York USA /-//*// T8
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Thank You! 7= Weill Cornell

s Medicine

Differential Deep Learning on
Graphs and its Applications

Chengxi Zang and Fei Wang
Welll Cornell Medicine
Wwww.calvinzang.com
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