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This Tutorial

dMolecular Graph Generation: to generate novel molecules with
optimized properties
oGraph generation
oGraph property prediction

oGraph optimization

dLearning Dynamics on Graphs: to predict temporal change or final
states of complex systems

oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression

dMechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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A Quote from Prof. Judea Pearl

Data Sciencel lacking a model of reality3may

be statistics® but hardly a science.

——— Judea Pearl
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Data Science, Statistics, and Reality
Models

Statistical Reality
Dat. Models: f(x) Models?
P p(z) |
?
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What are Reality Models?

dDynamical Systems by Differential Equations

ATOMIC &
MOLECULAR PHYSICS
2
Macro: F = d(;r;v) Micro: ih%‘l’(l‘,t} = %vz + Vir,t)| ¥(r,t) Chaos: % =z(p—z) -y

— =y — [z
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What are Reality Models?

dDynamical Systems by Differential Equations
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Data Science, Statistics, and Reality
Models

Statistical Reality dx
Data' Models: J (*) Models dt

p(z)
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Data Science Path: Data = Statistical Models =
Reality Models

Statistical Reality dx
Data: | x Models: /. (x) Models: dt
p(x) L\ '




Problem Definition

Data X -> Statistical Model f(X) = DEs C:l—)t(

JProblem 1 (Density Estimation): What are the
distributions which generate the observed data
samples?

JProblem 2 (Mechanism Discovery): What are the
dynamic systems described by Differential Equations
(DEs) which generate the observed distribution?
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Problem Definition

Data X -> Statistical Model f(X) = DEs Z—f

JdProblem 1 (Density Estimation): What are the
distributions which generate the observed data
samples?

JProblem 2 (Mechanism Discovery): What are the
dynamic systems described by Differential Equations
(DEs) which generate the observed distribution?
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Density Estimation: Data = Statistical Models

JGoal: To fit complex data distribution, and to generate
them

oProbability density function: fx(x), Cumulative density
function:Fy (x)=/"_ fy(r)dr

oHazard function: Ay (x) = {;Xg;
X

Fy(x) (Survival analysis)

Survival function: Sy(x) =1 —
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Density Estimation: Data = Statistical Models

Non-parametric v.s. Parametric distribution model
oKernel density estimation, Kaplan—Meler estimator (Survival analysis)
oPDF/Hazard function (+ Mixture Model) + Maximum Likelihood

Estimation

dStatistical frameworks + computational power from

machine learning
OoAutoregressive model: fx g(x) =]

™ fro(xilx<)) (chain-rule)

oVariational autoencoder (VAE): fy o (x) = | fxo(x,2) dz =

ffX|Z,9 (x|2)fz0(2) dz (marginal pro

nability)

oNormalizing flow: fy¢(x) = fZ,Q(Z(x))|det%| (change of variable

In integration)

*MoFlow in tutorial part I: Generating Molecular Graphs
oGenerative Adversarial Networks (GAN): likelihood-free

JWe are familiar with this step.
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Problem Definition

Data X -> Statistical Model f(X) = DEs Z—f

JProblem 1 (Density Estimation): What are the
distributions which generate the observed data
samples?

JdProblem 2 (Mechanism Discovery): What are the
dynamic systems described by Differential Equations
(DEs) which generate the observed distribution? .

oUnfamiliar in CS community
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Why Is It Matter?

JTo understand, predict, and control real-world
dynamic systems in engineering and science.

Force Velocity Motion . .
SE= P g = N et Tumor Size Growth Dynamics
_ ds s = =(vp +0)t
ZF = ma (Constantl fass) V=u E 1 Tumor size: Jem
§ =t + §at2 - 2000 [
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Av 1 2 ° 3cm £
aaverage = Ar T= Emv | g
dv _ d’s . Torque L ;3
AT w T ar Gravity Sr=% :
Variance 2= G”:_lzmz 2.m=rxF 'é
=2 g( )2 Mass Ener Drude L g e
Ni=1 gy rude Law 5cm ----- 5 20 2% 3N 0}’ 4
E = J']‘[C"2 o =— k ~ =2 inches Days After Tumor Implantation
Impulse Degsi ]
J=Ap= / Fdt ens‘ntly Chinge
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A Major Topic in Network Science

dMechanism Discovery Problem: What are the dynamic
systems described by Differential Equations which generate
the observed distribution?

oE.g. Narrow-tailed distribution vs. Heavy-tailed distribution
oHow to generate power law degree distribution in random graphs

a.  posson

Image from http://networksciencebook.com/chapter/4#hubs
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Power-law Degree Distribution in Random Graphs

——— — — — — — — — —— — — — —— — — — —— —— — —— —— —— — — — —— — —

[ H™ML) Emergence of scaling in random networks
I AL Barabasi, R Albert - science, 1999 - science.sciencemag.org

| Systems as diverse as genetic networks or the World Wide Web are best described as
| networks with complex topology. A common property of many large networks is that the
| vertex connectivities follow a scale-free power-law distribution. This feature was found to be

I\ Yr Y9 Cited by 35561 Related articles All 67 versions Import into BibTex 9%

|
/

Constant Rate A Dynamic System Power-Law Distribution
Arriving In Random Graph
10~ .,
pkm \“b

e
Richer-get-richer dk; K . .« 3
Preferential attachment di 2% —1 07| ye3 8¢3
Matthew effect 10'1-0‘ o 10 k m — m
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Power-law Degree Distribution in Human Dynamics

JBurst Human behavior
JPower-law Distributions of Inter-Event times

JdHuman Behavior Dynamics modeled by Differential Equations

identification number of every marked bee that arrived there, and the hive was never opened

unless an observer was at the feeder. Onee foraging flights between hive and feeder were well
established, observers in the tent watched the waggle dances. Whenever a numbered bee was
seen to follow a dance and then move directly towards the exit, an observer outside the tent
was alerted to catch the bee as it attempted to leave. If its identification number indicated

The origin of bursts and heavy
tails in human dynamics

00 08 A
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that it had never previously visited the feeder, the bee was confinmed as a recruit, and a "
transponder attached. The bee was then either released directly from the hive exit, or takenin - Albert-Liszia Barabasi
an opaque tube to one of three release points 200-250 m from the hive, and allowed to fly [ r h 1
from there. Bees fitted with transponders could be detected while in flight within a 190% arc  (Cepger for Complex Networks Research and Department of Physics, University of S— 3
of radius 900'm, centred on the radar; their positions were shown once every 35 on the Notre Dame, Indiana 46556, USA ) 1
screen of a desktop persanal computer, and their coordinates recorded'” RO, Sk e 300 - 7 7
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i Sherman, G. & Visscher. P! K. Honeybee calanies achieve fitness through dancing. Nature 419, dynamics, used from risk assessment to communications, assume (]
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well approximated by Poisson processes'”. In contrast, there physical sciences, forecasting human and social patterns remains a 500 k I ’ J ' I ’ J ) 10° F ! ! I b
is increasing evidence that the timing of many human difficult and often elusive goal. —_
activities, ranging from c¢ ication to entertainment and Current models of human activity are based on Poisson pro- (=1 o (e) T (f)
work patterns, follow non-Poisson statistics, characterized by  cesses, and assume that in a df time interval an individual (agent) - ; 1
bursts of rapidly occurring events separated by long periods of  engages in a specific action with probability qdt, where g is the [1}] 300 - ~ 10™* E 3
inactivity* *. Here 1 show that the bursty nature of human overall frequency of the monitored act This model predicts that E —_
behaviour is a consequence of a decision-based queuing the time interval between two consecutive actions by the same |: L i .,_I:,
process™'’: when individuals execute tasks based on some per- individual, called the waiting or inter-event time, follows an o
ceived priority, the timing of the tasks will be heavy tailed, with  exponential distribution (Fig. la—c)". Poisson processes are widely > I | 5
most tasks being rapidly executed, whereas a few experience very  used to quantify the consequences of human actions, such as E 100 u 10 r T
long waiting times. In contrast, random or priority blind modelling traffic flow patterns or accident frequencies', and are v L J‘ | .I m I |
execution is well approximated by uniform inter-event statistics. commercially used in call centre staffing’, inventory control’, or to (] A bl b B bl
These finding have important implications, ranging from estimate the number of congestion-caused blocked calls in calls in
resource rr:lanagf.'mcnt to service allocation, in both communi- mobile L'l‘l‘l'll]ll!l'll‘(‘.lliﬂlli‘. Yk‘li..' an i'?"'“‘""ri“?- nur;lhur of recent - 1 00 L s L L L " 1 I 10'” i |“ |1 |‘ !s
cations and reta measurements indicate that the timing of many human actions
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Limitations

INetwork Science:

oDiscovery: Power-law (heavy-tailed distributions) in both structure
and dynamics of complex systems.

oCase by case study: a distribution = a dynamical system with
differential equations

oLacking a general method to find differential equations from
distributions

oLacking a data-driven way
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Our Contribution

JA math theorem bridges any distribution and its

generative dynamic system.
oA Dynamic System (N > 1 agents)
oSimple and interpretable!

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020
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Dynamical Origins of Distribution Theorem

- Given a dynamic system D(t) = {x;(t) > 0| d’;"t(t)

agent 1 who arrives in the system at time t; according to the Poisson process P(t|1p) =

0<t; < <t; < <t} the state of the i*" agent changes according to differential
dx;(t)

, Xi(t;) = x9,i = 1,2, ...}, consisting of

equation with initial value X,

- and the cross-sectional state of D(t) at time point t, namely x(t) = {x4(%), ..., x;(t), ... }

_ t;
L . . dxi(D) dF1(1-)
follows distributions F(x(t)) if and only if o lxo = P
Stochastic, linear Deterministic, nonlinear Complex Pattern
Backward:
Forward: data _ ‘ system
generation Dynamical identification/Le
- system - arning

-
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Dynamical Origins of Distribution Corollary

J A Survival Analysis Version: e.g. for biostatistics
OSurvival function: S(x) = f;; f(s)ds=1 — F(x)

OHazard function: A(x) = Alim0 Pr(xSX<z;Ax X26) _ {; 83
X—

OCumulative hazard function: A(x) = f;; A(s)ds

(JUnder the same conditions, the cross-sectional state of D(t) at

time point t, namely x(t) = {x4 (t) ., Xi(t), ...} follows distribution

d xl ( t) da-1 (ln—l)

dt

F(x(t)) if and only if with initial value x
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Proof Sketch

 Inverse transform sampling in Y
statistics: i
1. Generate a random number u from the i
standard uniform distributions Unif|0,1]. 0.75
2. Find the inverse of the desired CDF,
e.g. Fy1(x). 0.90
3. Compute u = Fy 1(x). The computed 0.25 -/
random variable X has distribution
Fx(x) = 0

Intuition: CDF transforms complex data
into uniform probability from 0 to 1.
Reversing the process from distribution
to data samples.
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Examples

dxi(t) _ xi(t)

_ a ° =
- Power law: f(x) = ax$x~ (@D A(x) = ~ dt at
. _ dx;(t) 1
- Exponential: f(x) = ae ™, A(x) = « a4t T w
. . e* eX dx;(t) L
- Sigmoid: f(x) = Tren)? AMx) = — (x>0) it t-tg
. 1 _ a _ : 1-a
- Weibull: f(x) = al%x% 1e=)7 A(x) = aA%x* 1 O O)
dt A%at
.. Cross-sectional Cross-sectional states
| distributions
~ .... 10?
5 10 \. £ Deterministic
| ° dynamics
10° 10" . 102 10° 1001{']2{'

Time t
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Appl: Discovering Distributions’Governing ODEs

Interpretable Mechanisms: Preferential Attachment, Growth Competition, Env. Limits, Non-liearity etc.

DATA DISTRIBUTION 1 SURVIVAL ANALYSIS DYNAMIC SYSTEM ]
f(x) F(x) Ax) Alx) xi(t) DyNaMics % INTERPRETATION
In(#)
EXPONENTIAL ae” ™ 1-e X a ax e % GC
- 1 ; PA +
POWER LAW axZx @t 1-(32) 4 aln xg(l,i!_)a x‘;—;} ac
a(x10_x1-0) a(x1=0_x1-0) 8
STRETCHED e 7 0 ¢ =2 0 a i(xl'g _ XI_DJ []n(i)ﬁ N xl'g] x; (1) NON-LINEAR PA
EXPONENTIAL P +f 1-0 0 !« 0 at +GC
1
(n )@ %) NoN- PA
1 —(Ax)® _(Ax)A ) ; ON-LINEAR
WEIBULL al®x¥ e~ 1 - X al“x® (Ax)” ; CPT . Ge
(L 1)%
Aar(Ax)%-1 1 Aa(Ax)¥-1 o I x;(t) PA +
Loc-LogisTIC [14(Ax)@ )2 . 1+{Ax)® 14+ Ax)® Inf1 + (Ax)"] A alt-t;) Since THEN GC
* 1 * 1
SIGMOID {1+€ex)2 - e v In(1+ e¥) ]n(ril_ -1) =n SINCE THEN GC
(Inx)* “1_ti “1() 1 PA
i " 1 - fx) _1nl1 - 7 (1-F) db™(z) tj *
LOG-NORMAL ok ®(Inx) (i 3) In[1 - &(In x)] e Xi—g; SquARE GC
2
. 1 =% (x) “14 b dd~1(z) t
NORMAL i T d(x) F000) - In[1-®(x)] o7 1- ) T r—g Souage GC
1 -a 1 b-a L b-x,(t) EL+
UNIFORM = _ = In 3=2 b-(b-a)+ n ac
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Appl: Dynamics for Heavy-tailed Distributions

Shared Mechanisms: Preferential Attachment for all heavy-tailed distributions

DATA DISTRIBUTION SURVIVAL ANALYSIS DyNAMIC SYSTEM
f(x) F(x) Ax) Alx) xi(t) DyNaMics % INTERPRETATION
In(#) |
EXPONENTIAL ae” X 1-e @ a ax e - GC
1 .
POWER LAW axZx @t 1-(2) 4 aln % x( )@ x‘;—(;} Pélg
a(x1-0_x1-0) a(x1=0_x1-0) 8
STRETCHED e - e_l-—ﬂ?ﬂ a L(xl_g _ xl_gJ []n(i)ﬁ N xl_g]ﬁ x; (1) NoN-LINEAR PA
EXPONENTIAL < «0 1-0 0 ;) T at +GC
1
(n £-) =y NON-LINEAR PA
WEIBULL P R - (207 al%x®! (Ax)” !i xia — . Ge
Aa(Ax)-! | Aa(Ax)¥-1 1 + (1) (f_f‘”% x;(t) PA +
LOG-LOGISTIC T @ 1= Ax)® BT [1+(Ax)7] A alt-t;) SINCE THEN GC
* 1 * 1
SIGMOID {1+€ex)2 - e = In(1+ e¥) ]n(ril_ -1) =n SINCE THEN GC
LoG-NORMAL * L_e” In?xlz d(lnx) LG ~In[1 - &(Inx)] - di™(z) 4 PA+
i x\2r 1-d(Inx) Ldz 2 SouARe GC
7
" 1 - ) - tj dol(z) ¢
NORMAL il O(x) 14% ~In[1-®(x)] oN(1- 1) FrE SQUARE GC
_ - t; b-x;(t) EL +
UNIFORM — o = In 24 b-(b-a)L J:‘{ P

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS

--- AAAI-2020



App2: Discovering New Distributions from DEs

New distribution
tions Interpretable ODE
GENERATED BY o a t—t
EXPONENTIAL ki 1 1 fz' a g oz = 25 (1)
& 4112 1t = In = - T In[£In £ +1 o i
( DYNAMICS 2§ mzg t) 1+¢ In oo 2(f; In g0 41) (5 n g5 +1 zpe d PA
SENERATED BY o
-7 1-6_,1=8
STRETCHED t a(1-8 . 1-1 ) . s t t; t o
EXPONENTIAL 7=0 -1+ 5 In 5] t= —=7 mln[i—ll_ﬂ In Z 4 1] zge  o(1=0) z; (ﬂ] PA+
DYNAMICS e 11'{? In Z 41] 1= ki a(l=f)zln =4t "z t; 0 at NON-LINEAR GC
MICS e 5
T
GENERATED BY a_ 1A N(t
wt, N(t=t;)
SIGMOID -y pEELL S 1 1 d a o Be—a 2 () [N =2 ()] PA +
v - L (ln[-2-InA+1 In[-A-IlnA+1 N2 2 —_——
DYNAMICS# =y Ind I+ wInd dr [Nti ) [Mi +1] S =ry _ EL
GENERATED BY (N-mu}—'ﬁ’- -f-1 thBe g
¥ '} 4 T i o B(i]?
LoG LoGISTIC =0 1-A"R® N a1 A t; z; () [N =z;(t)] PA + EL +
! =2 Z(N=7) N In — 5 —at
DYNAMICS N(N-z) N B o ae
“EN , 1- - —6_1-
{:;:E:;E:‘ =1 -1 In[14 J-i—ﬁlﬂ‘ =9) 1n 4] nf14 23=0) 1 4] N g1=0_,1-80
‘ — 14 2U=0) ), 4)T=0 1 -1+ 2l=8) ), 4)T=8 d Nt Nt NBeo  1-0 z;(H)[N=z;(¢)] PA +EL +
LOGISTIC dz Nil=? Nel=0 dz -0 T3 =5 ek AL i AL A . .
DYNAMICS* : h N t=0—tl= at? NON-LINEAR GC
SEN 14Bec  I=0
GENERATED BY a1
CONFINED ti N;f — 1— 1 ﬁ Nl-z In[l — & Ip == N-zg N—z;(t) Bl
: 1= & ] = — i =% - -z t,  N= — e
prowes (=B R = T S i :
CONFINED aiozg) 7 - (g==)° a —aln f=E N (N 0% N—z, () GC +
POWER LAW (N=z)i=e N=zg N-z N—=zp —z0)(;) at EL
GEEEEATED BY _a 1 S ln[1-°(11‘5” I ;{f-z ]
"ONFINED (= - S = -
STRETCHED ) =0 1-[1- ﬂ(ll.—rf] In =L | T= Vo) i 2 N — Mj—g- N-z(t) NON-LINEAR GC
iy 1-0 =7 ) N=zg a(l=6) N=zx 1=0 1—8 — —
EXPONENTAIL [1-"'{1_9J =z 1= i I=-=1=7 " v, t1=0_¢: at +EL
GENERATED BY L ’ i e U7
¥ / fa
LINEAR u_t_gg 1 — 1 1 o 1) t=t; 1 CONSTANT
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App3: New Statistical Models: One DE, Many
Distributions

JA showcased example: A new statistical tool to
generate/fit many complex multiscale distributions:

m dx;(t) _ (x;(t) + 4)° -~

dt  B(x;(t) + )t + at \

10'“’5’ "'--Exponential‘z': \‘ 10“”; ““'Exponek‘;ial.‘:'.,
| ——Power-Law (PL | — hed Exp (SE
-0 [ = -PL+Cutoﬁ{ ) | [= -:tEm:(l‘::u!off F_‘::(S )
A(X) = ﬁ + a(x + A) 107~ PL+ Shortscale 1075}~ SE + Shdrtscale
| - PL+Multiscale _ ) | SE+Multiscale )
. . . 10° 10° 100 10°
Distribution | tiscale distrib X X
. Complex multiscale distributions -
Famlly P (a) =1 (b) 6 #1

PDF(X)
PDF(X)

C bili E tial P 1 Power law Power law Power law
apability xponentia ower law + cutoff * + Shortscale + Multiscale
PDF (8 = 1) Pe Px a A\ x—(a+1) aA\?® x~(a+1) g=Px aA(x + A)~(@+D) (B+ 225X + 1) %eFx
Hazard rate Ji < p+ = = B+ =5
Our model v v v \/3 f
- . . 1 +s  Stretched exponential Stretched exponential Stretched exponential
Capability =~ Exponential Stretched exponential + Cutoff * + Shortscale +Multiscale
__e_  1-8 o  1-8_ __a 1=0 _p1-6 By 1= _p1-0
PDF (8 # 1) ae *x ax % 1-8* ax~%e 1-8" px a(x+AN)"Pe"1-0 [(c+A) Aol [B+alx+ A) e Px=qglx+a) AT
Hazard rate o ;Lﬂ B+ ;LB (x+i}3 B+ (xfmf’
Our model v v v

* For the Power law distritbuion with cutoff case and Stretched exponential distribution with cutoff case, the probability density functions of which are derived approximately by the harzard rates. Refer to the Model Section.
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App3: New Statistical Models: One ODE, Many

Distributions

JOne Equation, Many
Distributions

More robust statistical
tools to fit empirical data,
existing methods show
large bias

oBaseline: statistical tool to fit
heavy-tailed distribution In

Clauset et al. 2009. Power-Law Distributions in Empirical Data. SIAM Reuv..

0 o ]
10 -‘i 10° 10
= B g\ -4
10
- \é P
b " e AE W
_ _ %1% _w® u . _
& 5 s x, % 10%
] e AA i . e
g B Words (Real)” 2 405t W Terrorism (Re s g B Species (Re; e g B Blackouts (Real)
5 Our Model ~5- Our Model w. 107} ~©-Our Model Jgt | <5 Our Model
A PL-Generate 2 A PL-Generate 3.{1\2{3 L] 4 PL-Generate h WA £ PL-Generate o
= —PL-Equation o = —PL-Equation - = = PL-Equation FaY = =PL-Equation 51
10-]0 L ILF_“ 10-]!]
10° 10° 10° 10? ot 10° 10? 1t 10? 10°
X X X X
a) Words b) Terrorism c) Species d) Blackouts
P
] 0 o
10 10 10
" - !\ﬁ
. N
10 102
- - - 10.5 -
= % 108 * * &
T T T T g N
g W Cities (Real) g ® Fire (Real) o ™ Quakes (Real) ] B Actor (Real) %
=5~ Our Model ~&-0ur Model 10710 b -2~ Our Model | -5 Our Model J}
107t A PL-Generate 73 e £ PL-Generate . A PL-Generate s 07 A PL-Generate "
- =PL-Equation d‘;-) = =PL-Equation © e ~PL-Equation o |- -PLEquation "
10 10 -
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App3: Data-Driven learning ODEs
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App3: Data-Driven learning ODEs
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Summary

JA theorem constructing dynamic
systems described by Differential
Equations which generate the observed

distribution RAR
AN

Discovery many new DEs and Py ‘ %

distributions ! 2O

“  Data ™
dLearning many multiscale distributions ‘ ‘

by one differential equation Survival ~ Dynamic System

Analysis
QA framework to connect these dots 4 ODE
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This Tutorial

dMolecular Graph Generation: to generate novel molecules with
optimized properties
oGraph generation
oGraph property prediction

oGraph optimization

dLearning Dynamics on Graphs: to predict temporal change or final
states of complex systems

oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression

dMechanism Discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS --- AAAI-2020 34



ge=ty Weill Cornell
> Medicine

Part 3.
Dynamical Origins of
Distribution Functions

Chengxi Zang and Fei Wang
Welll Cornell Medicine
www.calvinzang.com

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII --- AAAI-2020 35


http://www.calvinzang.com/

	幻灯片编号 1
	This Tutorial
	This Tutorial
	幻灯片编号 4
	A Quote from Prof. Judea Pearl
	Data Science, Statistics, and Reality Models
	What are Reality Models?
	What are Reality Models?
	Data Science, Statistics, and Reality Models
	Data Science Path: Data  Statistical Models  Reality Models
	Problem Definition
	Problem Definition
	Density Estimation: Data  Statistical Models 
	Density Estimation: Data  Statistical Models 
	Problem Definition
	Why Is It Matter?
	A Major Topic in Network Science
	Power-law Degree Distribution in Random Graphs
	Power-law Degree Distribution in Human Dynamics
	Limitations
	Our Contribution
	Dynamical Origins of Distribution Theorem
	Dynamical Origins of Distribution Corollary
	Proof Sketch
	Examples
	App1: Discovering Distributions’Governing ODEs 
	App1: Dynamics for Heavy-tailed Distributions 
	App2: Discovering New Distributions from DEs
	App3: New Statistical Models: One DE, Many Distributions
	App3: New Statistical Models: One ODE, Many Distributions
	App3: Data-Driven learning ODEs 
	App3: Data-Driven learning ODEs 
	Summary
	This Tutorial
	幻灯片编号 35

