

Differential Deep Learning on Graphs and its Applications

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com

This Tutorial

- www.calvinzang.com/DDLG_AAAI_2020.html
- **□**AAAI-2020
- ☐ Friday, February 7, 2020, 2:00 PM -6:00 PM
- □Sutton North, Hilton New York Midtown, NYC

This Tutorial

- Molecular Graph Generation: to generate novel molecules with optimized properties
 - Graph generation
 - Graph property prediction
 - Graph optimization
- Learning Dynamics on Graphs: to predict temporal change or final states of complex systems
 - Continuous-time network dynamics prediction
 - Structured sequence prediction
 - ONode classification/regression
- Mechanism discovery: to find dynamical laws of complex systems
 - Density Estimation vs. Mechanism Discovery
 - Data-driven discovery of differential equations

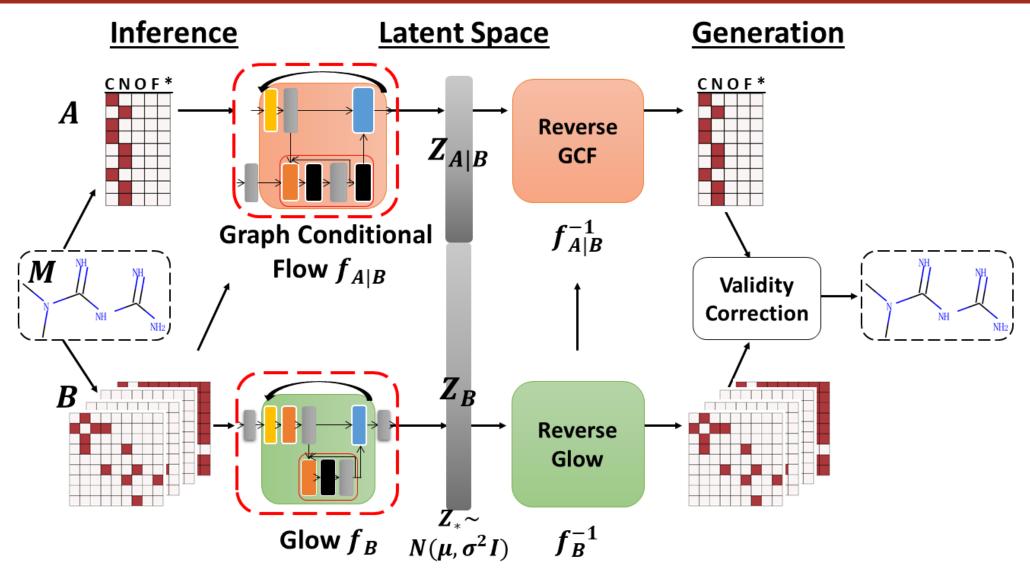
Molecular Graph Generation

☐Goal: To generate novel molecules with optimized properties

☐ Graph Analysis tasks

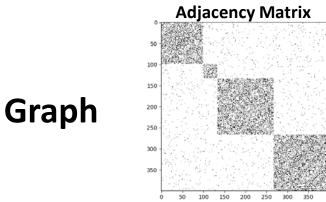
- \circ Graph generation: $G \sim P(G)$
- \circ Graph property prediction: f(G)
- oGraph optimization: G → G' and maximizing f(G') f(G)

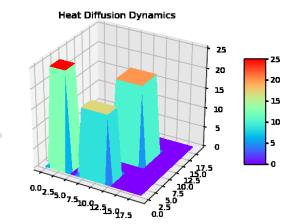
MoFlow: An Invertible Flow Model for Generating Molecular Graphs



Learning Dynamics on Graphs

- □Goal: To predict temporal change or final states of complex systems
- ☐ Graph Analysis tasks
 - \circ Continuous-time network dynamics prediction X(t)
 - \circ Structured sequence prediction X[t+1]
 - oNode classification/regression Y(X(T))





Dynamics of each nodes

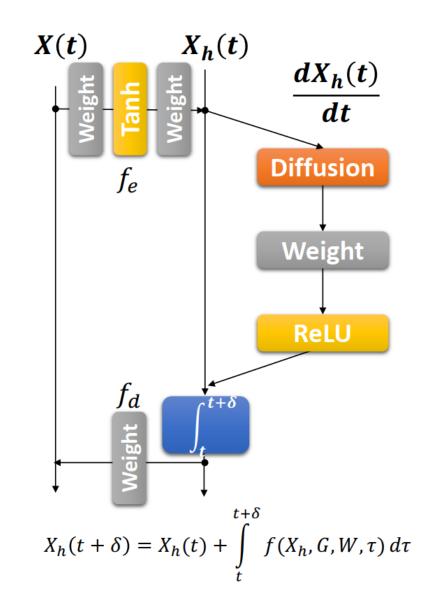
Neural Dynamics on Complex Networks

□Our Model :

argmin
$$W_{*,b_{*}} = \int_{0}^{T} |X(t) - \hat{X(t)}| dt$$
subject to
$$X_{h}(t) = \tanh \left(X(t)W_{e} + b_{e}\right)W_{0} + b_{0}$$

$$\frac{dX_{h}(t)}{dt} = \text{ReLU}\left(\Phi X_{h}(t)W + b\right), X_{h}(0)$$

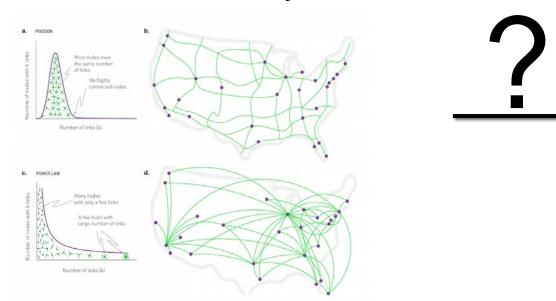
$$X(t) = X_{h}(t)W_{d} + b_{d}$$



$$\Phi = D^{-\frac{1}{2}}(D - A)D^{-\frac{1}{2}} \in \mathbb{R}^{n \times n}$$

Mechanism Discovery

- ☐Goals: To find dynamical laws of complex systems
- ☐ Graph Analysis tasks
 - Density estimation vs. mechanism discovery
 - Data-driven discovery of differential equations

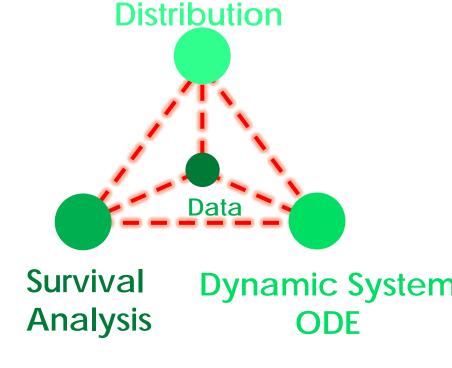


 $\frac{dX}{dt}$

Image from http://networksciencebook.com/chapter/4#hubs

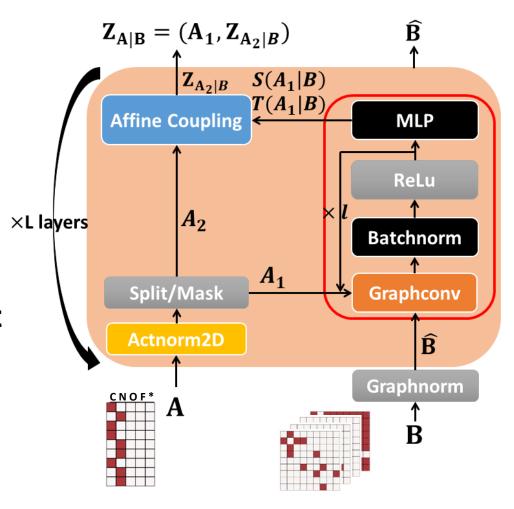
Dynamical Origins of Distribution Functions

□ A theorem constructing dynamic systems described by Differential Equations which generate the observed distribution



Some Practical Tips

- Data preprocessing
 - oPadding null atoms, augmenting null edges
- Normalization matters
 - Graphnorm, batchnorm, actnorm
- Stable flows with less reconstruction error
 - Normalization, sigmoid, checking each layer
- Discrete mapping is faster than integration
- Split and coupling layer are very efficient invertible framework for graph convolution
- Visualizing dynamics on graphs
- ☐ Thinking physical meanings of differential equations



Differential Deep Learning on Graphs

- ☐ Graphs and Differential Equations are general tools to describe structures and dynamics of complex systems
- □Inspired by the Differential Equations, we can design and analyze Deep Models
- □For <u>applications on graphs</u> (our focus), including:
 - Molecular Graph Generation
 - oLearning dynamics of complex systems
 - Mechanism discovery

in a data-driven manner

More Directions

■Deep Learning → Differential Equations

- Analysis
 - Math analysis tools
 - Concepts in dynamic system and control: stability, robustness, complexity, resilience, etc.
- Modeling Continuous-time process
 - Physical meaning. The laws of nature are expressed as differential equations.

■Differential Equations → Deep Learning

- Design
 - There are many dynamical systems and differential equations.
 - ❖ Discretization of continuous time-varying neural dynamics → Deep Neural Networks
 - DNNs implemented by modern auto-differentiation softwares are more flexible, expressive and efficient
- Generative models and Invertible structures

More Directions

Applications

- ONetwork medicine
- Drug discovery
- Molecular dynamics
- Urban computing
- Social networks
- Recommendation
- oEtc. (structures + dynamics)

Thank You!

Differential Deep Learning on Graphs and its Applications

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com