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This Tutorial

WMolecular Graph Generation: to generate novel molecules with
optimized properties
oGraph generation
oGraph property prediction

oGraph optimization

ErLearning D?/namics on Graphs: to predict temporal change or final
states of complex systems

oContinuous-time network dynamics prediction
oStructured sequence prediction
oNode classification/regression

EfMechanism discovery: to find dynamical laws of complex systems
oDensity Estimation vs. Mechanism Discovery
oData-driven discovery of differential equations
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Molecular Graph Generation

JGoal: To generate novel molecules with optimized
properties

dGraph Analysis tasks
oGra
oGra
oGrap

D
D

N generation: G ~P(G)
N property prediction: f(G)

N optimization: G 2 G' and maximizing f(G") — f(G)
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MoFlow: An Invertible FlIow IMlodel Tor
Generating Molecular Graphs
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Learning Dynamics on Graphs

JGoal: To predict temporal change or final states of
complex systems

dGraph Analysis tasks
oContinuous-time network dynamics prediction X (t)
oStructured sequence prediction X[t + 1]
oNode classification/regression Y(X(T))
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Neural Dynamics on Complex Networks

- X(t X (t
JOur Model : ®) n () aX, (8
T ) L@ dt
argmin L = f | X (t) — X(t)| dt
Wk ,bx 0 Diffusion

subject to X (t) = tanh ()K.'(lt)VV,ﬁ3 + be) Wo + bo

dXn(t)
dt
X(t) = Xp(t)Wy4 + by
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Mechanism Discovery

JGoals: To find dynamical laws of complex systems

1Graph Analysis tasks
oDensity estimation vs. mechanism discovery
oData-driven discovery of differential equations
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Dynamical Origins of Distribution Functions

A theorem constructing dynamic
systems described by Differential
Equations which generate the
observed distribution

Survival ~ Dynamic Systerr

Analysis ODE
Stochastic, linear Deterministic, nonlinear Complex Pattern
Backward:
Forward: data - Dvnamical - . s:y.ster.n
generation y identification/Le
- system - arning
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Some Practical Tips

1 Data preprocessing
oPadding null atoms, augmenting null edges

J Normalization matters
oGraphnorm, batchnorm, actnorm

] Stable flows with less reconstruction

Zyg = (A1, Zy,B) B

Zp, 8 S(A4]B)

T(A,|B
Affine Coupling <( 118) MLP \

error |
oNormalization, sigmoid, checking each layer
- . . XL layers A, < |l 1
 Discrete mapping is faster than
Integration A || t
 Split and coupling layer are very efficient ? —
Invertible framework for graph ‘ﬁ‘
convolution |
CNOF* A

 Visualizing dynamics on graphs

d T_hinkin(t:;_ physical meanings of
differential equations
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Differential Deep Learning on Graphs

JGraphs and Differential Equations are general tools to
describe structures and dynamics of complex systems

dinspired by the Differential Equations, we can design
and analyze Deep Models

JdFor applications on graphs (our focus), including:
oMolecular Graph Generation
oLearning dynamics of complex systems
oMechanism discovery

N a data-driven manner
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More Directions

dDeep Learning - Differential Equations
oAnalysis
“*Math analysis tools

“*Concepts in dynamic system and control: stability, robustness, complexity,
resilience, etc.

oModeling Continuous-time process
“*Physical meaning. The laws of nature are expressed as differential equations.

Differential Equations - Deep Learning
oDesign

“*There are many dynamical systems and differential equations.

“»Discretization of continuous time-varying neural dynamics - Deep Neural
Networks

“*DNNs implemented by modern auto-differentiation softwares are more flexible,
expressive and efficient

oGenerative models and Invertible structures
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More Directions

JApplications
oNetwork medicine
oDrug discovery
oMolecular dynamics
oUrban computing
oSocial networks
oRecommendation
oEtc. (structures + dynamics)
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