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❑1. Lengthy, costly, & with high failure 
rate
o$2.6 billion, ≥ 10 years in total, clinical 

success ~12%, poor translation in patients 
oOur focus: Drug discovery (lead discovery 

and optimization) ~ 5 years and 33% of total 
cost

❑How to accelerate the process, reduce 
its cost, and increase the success rate?

Nature 2010, Proteomes 2016 KDD 2020 -- MOFLOW 4

https://www.nature.com/articles/nrd3078.pdf
https://www.researchgate.net/publication/308045230_Omics-Informed_Drug_and_Biomarker_Discovery_Opportunities_Challenges_and_Future_Perspectives#fullTextFileContent
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❑2. Big chemical space but largely 
unexplored
oThe scale of drug-like small molecules: 
1033~ 1060

oExisting chemical database to (linearly) screen: 
~106

oA huge gap! Exhaustive enumeration is 
impossible!

❑How to efficiently explore such a big 
chemical space?

Nature 2017 KDD 2020 -- MOFLOW 5

https://www.nature.com/news/the-drug-maker-s-guide-to-the-galaxy-1.22683
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❑3. Difficult to optimize molecules
oDifficult to design novel & better  molecules:
❖High-throughput virtual screen, or

❖Medicinal chemists’ knowledge 

oDifficult to evaluate: 
❖expensive experiments, In-vitro, in-vivo, in-silico

❑How to efficiently optimize molecules 
guided by the targeted properties?

Image from Sygnaturediscovery

Design

Evaluate

https://www.sygnaturediscovery.com/drug-discovery/integrated-drug-discovery/lead-optimisation/


❑Driven by AI and Big Chemical Data

❑to reduce time, cost and failure rate of drug 
discovery process
o3-5 years→ 3-5 months

❑to efficiently explore big chemical space
o~ 𝟏𝟎𝟔𝟎 drug-like chemical space

❑to efficiently and automatically design novel 
molecules with optimized properties
oautomatic, in silico, learning from data and human 
knowledge

Our Vision: AI for Drug Discovery
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Problem Definition

❑Goal: To generate novel molecular graphs with 
optimized properties

❑Data Input:
oDiscrete 2D molecular graphs, etc. 

o 𝐺1, 𝐺2, … , 𝐺𝑁 : Molecular graph data samples

o 𝑦1,𝑘 , 𝑦2,𝑘 , … , 𝑦𝑁,𝑖 𝑘=1…𝐾
Some properties of molecules

❑Output:
oNovel molecular graphs {𝐺𝑁+𝟏, 𝐺𝑁+𝟐, … } with optimized
properties.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 8

Metformin (二甲双胍)
CN(C)C(=N)N=C(N)N



Why Is It Hard?

❑Discrete molecular graph data and its combinatorial 
complexity
oNodes/atoms and edges/bonds can have multiple types

❖Node types: C, H, O, etc., Edge types: single, double, triple bond.

oCombinatorial Complexity

❖ the scale of small molecular graphs ~ 1060

oDeep models are majorly designed for regular grid structures (image 
or text)

vs.

DIFFERENTIAL DEEP LEARNING ON GRAPHS AND ITS APPLICATIONS  --- AAAI-2020 9



Why Is It Hard?

❑Complex molecular graph optimization task:
oGraph generation: G ~P(𝐺)

oGraph property prediction: 𝑓(𝐺)

oGraph optimization: G→ G′ and maximizing 𝑓 𝐺′ − 𝑓(𝐺)

KDD 2020 -- MOFLOW 10
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Image adapted from Science 2018

https://science.sciencemag.org/content/361/6400/360


❑Encoding graph is hard, Decoding graph is much 
harder
oEncoding, embedding, inference with graph input

oDecoding, generation with graph output

❖E.g. chemically valid molecular graphs with valency constraints, novel

Why Is It Hard?

vec

𝑓: 𝐺 → ℝ𝑑
ℝ𝑑

vec

ℝ𝑑 𝑓:ℝ𝑑 → 𝐺

?

?
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Related Works

❑Classified by Data: 
oSequence: SMILES 

oGraph: molecular graphs

❑Classified by Deep Generative Models:
oAutoregressive Models (AR)

oVariational Autoencoders (VAE)

oGenerative Adversarial Networks (GAN)

oNormalizing Flow Models (Flow)

❑Classified by Search & Optimization
oGradient ascend

oReinforcement learning

KDD 2020 -- MOFLOW 17

KDD2020-Tutorial Recent Advances on Graph Analytics and Its Applications in Healthcare
http://www.calvinzang.com/kdd2020_tutorial_medical_graph_analytics.html

http://www.calvinzang.com/kdd2020_tutorial_medical_graph_analytics.html
http://www.calvinzang.com/kdd2020_tutorial_medical_graph_analytics.html


Our Choice

❑Classified by Data: 
oSequence: SMILES 

oGraph: molecular graphs

❑Classified by Deep Generative Models:
oAutoregressive Models (AR)

oVariational Autoencoders (VAE)

oGenerative Adversarial Networks (GAN)

oNormalizing Flow Models (Flow)

❑Classified by Search & Optimization
oGradient ascend

oReinforcement learning
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KDD2020-Tutorial Recent Advances on Graph Analytics and Its Applications in Healthcare
http://www.calvinzang.com/kdd2020_tutorial_medical_graph_analytics.html
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Basics of Normalizing Flow

❑An invertible generative model
oGoal: X~𝑷 𝑋 , by leveraging an invertible mapping 𝑓𝜃(𝑋)

❑ Inference:𝑍 = 𝑓𝜃(𝑋)
oFrom complex to simple, e.g. Z is Gaussian

❑Generation:𝑋 = 𝑓𝜃
−1(𝑍)

oGenerate complex by invertible mapping

❑Exact Maximum Likelihood Training
oChange of variable log𝑷 𝑋 = log𝑷(𝑍) + log | det(

𝜕𝑓𝜃

𝜕𝑍
) |

oargmax
𝜃

𝐸𝑀~𝑃𝑑𝑎𝑡𝑎[log 𝑃𝑀(𝑀; 𝜃)]

❑Constraints of network structures:
o𝑓𝜃: invertible DNNs, each layer is invertible

oComputing det(
𝜕𝑓𝜃

𝜕𝑍
) should be efficient

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.
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Inference Generation

𝑷 𝑿 : 
Complex empirical distribution

𝑷 𝒁 :
Simple latent distribution 

http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1605.08803
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf


Related works: RealNVP Model

❑ RealNVP: Real-valued Non-Volume Preserving flow

❑ Invertible layers: splitting dimensions + affine updated alternately

❑ Split: 
oX= 𝑿𝟏, 𝑿𝟐

o 𝐙 = (𝐙𝟏, 𝐙𝟐)

❑ Affine: 
o 𝒁𝟏 = 𝑿𝟏 (save information for reversing)
o 𝒁𝟐 = 𝑿𝟐𝒆

𝒔𝜽(𝑿𝟏) + 𝒇𝜽(𝑿𝟏) (affine)

o The reverse mapping:

❖𝑿𝟏 = 𝒁𝟏

❖𝑿𝟐 = 𝒆−𝒔𝜽(𝑿𝟏)[𝒁𝟐 − 𝒇𝜽(𝒁𝟏)]

❑ Deep: Next layer by alternating update,
o 𝒁𝟏 = 𝑿𝟏𝒆

𝒔𝜽(𝑿𝟐) + 𝒇𝜽(𝑿𝟐) (Residual)

o 𝒁𝟐 = 𝑿𝟐 (save information for reverse)

❑ …

𝒅𝒁𝟏

𝒅𝒕
𝒅𝒁𝟐

𝒅𝒕

=
𝒇𝜽(𝒁𝟐)
𝒇𝜽(𝒁𝟏)

Hamiltonian Systems
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Dinh et al. 2014. Nice: Non-linear independent components estimation

Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

𝒁 = (𝒁𝟏, 𝒁𝟐)

SplitSplit

affineaffine

×L layers
CNN

𝑿𝟏
𝑿𝟐

𝒇, 𝒔

𝑿 = (𝑿𝟏, 𝑿𝟐)
Chen et al. 2019. Neural Ordinary 

Differential Equations. NeurIPS.

https://arxiv.org/abs/1410.8516
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1605.08803
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf


Why Flow Frameworks

❑Invertible mappings 
oPotentials to generate more novel molecules

oVAE, GAN, AR are not invertible, see diagrams below

oFlow learns a strict superset and explores chemical space better

KDD 2020 -- MOFLOW 23
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Why Flow Frameworks

❑Exact maximum likelihood training
oVAE,GAN are not

❑Efficient one-shot inference and generation
oCapturing molecular structures in a holistic way v.s. AR’s step-by-
step way.

❑Better performance shown later

KDD 2020 -- MOFLOW 24



Idea of our MoFlow

❑Molecular Graph:  Molecule = (Atom, Bond)
oAtoms → Nodes,  Atom ∈ {0,1}𝑛×𝑘, n Nodes in k (atom) types

oBonds → Edges,   Bond ∈ 0,1 𝑐×𝑛×𝑛, Edges in c (bond) types

KDD 2020 -- MOFLOW 25

C N O F *

𝑩𝑨𝑴

= ( ),

A one-hot atom matrix A multi-channel tensor



Idea of our MoFlow

❑MoFlow: 
oMolecule=(Atom, Bond) How to model discrete atom-bond 
structures of molecule?

o𝑃𝑀 𝑀 = 𝑃𝑀 𝐴, 𝐵 ≈ 𝑃𝐵 𝐵 𝑃𝐴|𝐵 𝐴 𝐵

1. Any flow model 𝑓𝐵(B) for bonds 𝑃𝐵(𝐵)
❖Generating graph skeleton by 𝑃𝐵(𝐵)

2. Graph conditional flow 𝑓𝐴|𝐵(𝐴|𝐵) for atoms given bonds 

𝑃𝐴|𝐵 𝐴 𝐵

❖Generating nodes given graph skeleton by  𝑃𝐴|𝐵 𝐴 𝐵

3. Assembling atom and bonds with validity correction

KDD 2020 -- MOFLOW 26



The Generative Framework

KDD 2020 -- MOFLOW 27



A variant of Glow for Bond/Edge

KDD 2020 -- MOFLOW 28

❑ Squeeze

o 𝑋 ∈ ℝ𝑐×𝑛×𝑛 → ℝ𝑐𝑘2×
𝑛

𝑘
×
𝑛

𝑘

❑ Actnorm: 
o Stable dynamics

o 𝐵 =
𝐵−𝜇

𝜎2+𝜖
each channel over batch

❑ Invertible 1*1 convolution: 
o Expressive power

o ℝ𝑐×𝑛×𝑛 × ℝ𝑐×𝑐 → ℝ𝑐×𝑛×𝑛

❑ Split: 
o Discretization of Hamiltonian system

o B= 𝑩𝟏, 𝑩𝟐

o 𝐙 = (𝐙𝐁𝟏, 𝐙𝑩𝟐)

❑ Affine coupling: 
o Stable (batchnorm2D, Sigmoid) and expressive power (Affine)

o 𝒁𝑩𝟏 = 𝑩𝟏

o 𝒁𝑩𝟐 = 𝑩𝟐⨀𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝑺𝜽(𝑩𝟏)) + 𝑻𝜽(𝑩𝟏)

❑ Deep: alternating update in next layer



Graph Conditional Flow 
For Atoms Given Bonds

KDD 2020 -- MOFLOW 29

C N O F *

❑ Actnorm2D: 
o Stable dynamics

o 𝐵 =
𝐵−𝜇

𝜎2+𝜖
each row over batch

❑ Split: 
o Discretization of Hamiltonian system on Graphs

o A= 𝐴1, 𝐴2 by each row

o Z = (ZA1|B, ZA2|B)

❑ Graphnorm
o ෡𝐵𝑖 = 𝐷−1𝐵𝑖, 𝐷 = σ𝑐,𝑖𝐵𝑐,𝑖,𝑗 in-degree over all channels

❑ GraphConv(A|B), multi-channel
o σ𝒊=𝟏

𝒄 ෢𝑩𝒊(𝑴⊙𝑨)𝐖𝐢 + 𝐌⊙𝑨 𝐖𝟎

o update each row by the remaining rows

❑ Affine coupling: 
o Stable (batchnorm, Sigmoid) and expressive power (Affine)

o 𝑍𝐴1|𝐵 = 𝐴1

o 𝑍𝐴2|𝐵 = 𝐴2⨀𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝜃(𝐴1|𝐵)) + 𝑇𝜃(𝐴1|𝐵)

❑ Deep: alternating update in next layer

C N O F *

C N O F *



Molecular Graph Generation
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Graph Property Prediction



Molecular Graph Optimization

32

MLP

𝒀(𝒁)

Properties
KDD 2020 -- MOFLOW



Validity Correction

❑Valid molecules: valency constraints
oσ𝑐,𝑗 c ∗ 𝐵 𝑐, 𝑖, 𝑗 ≤ 𝑉𝑎𝑙𝑒𝑛𝑐𝑦 𝐴𝑡𝑜𝑚𝑖 + 𝐹𝑜𝑟𝑚𝑎𝑙_𝐶ℎ𝑎𝑟𝑔𝑒

oC: 4, O:2, O+:3

❑Validity Correction
oWhile checking valency constraints:
❖if follows constraints: 

◦ Return the greatest connected component

❖else:
◦ Delete unnecessary bond or add charge to invalid atoms according to chemical rules

KDD 2020 -- MOFLOW 33



Experiments

1. Molecular Generation & Reconstruction

2. Visualization of Continuous Latent Space

3. Property Optimization

4. Constrained Property Optimization

KDD 2020 -- MOFLOW 34



EXP1: Molecular Generation & 
Reconstruction 

❑The Problem:
oInput: 𝐺1, 𝐺2, … molecular graphs

oModel

❖Learned molecular generative model PM, and its invertible mapping 𝑓

❖Generation: 𝐺 = 𝑓−1(𝑍), where 𝑍 follows isotropic Gaussian

❖Reconstruction: 𝐺 = 𝑓−1(𝑍) where 𝑍 = 𝑓 𝐺

oGoal: To generate valid & unique & novel molecular graphs

❑Datasets:
o

#Graphs #Nodes #Node/Atom 
Types

#Edge/Bond 
Types

QM9 134K 9 4 3

ZINC 250K 38 9 3

KDD 2020 -- MOFLOW 35



EXP1: Molecular Generation & 
Reconstruction 

❑Evaluation metrics:
1. Validity: %chemically valid molecules in all the generated 

molecules

2. Validity without check/correction

3. Uniqueness: %chemically valid and unique molecules in all the 
generated molecules

4. Novelty: %generated valid molecules not in training dataset

5. Reconstruction rate: % training dataset which can be 
reconstructed from their latent representations

6. N.U.V.: %novel, unique and valid molecules in all the generated 
molecules

KDD 2020 -- MOFLOW 36



EXP1: Molecular Generation & 
Reconstruction 

❑More novel & 
unique & valid 
molecules

❑ 100%  
Reconstruction
oStrict superset of training 

dataset

❑ Better validity 
without check
oThan AR models. One-

shot models, a holistic 
way

❑ Our MoFlow
explores the big 
chemical space 
further and better!

KDD 2020 -- MOFLOW 37



EXP2: Visualization of latent space

38

❑Encode & decode between 
discrete graph space and 
continuous latent space!
oGrid interpolation around the 
latent representation of one 
molecular graph, and decode its 
neighbors
❖Smooth latent space → Similar 

graph structures (Tanimoto similarity)

oLinear interpolation between 
two molecules
❖Changing trajectory from one graph to 

another one.

KDD 2020 -- MOFLOW



EXP3: Property Optimization 

❑To Generate Novel
Molecules with the best 
Quantitative Estimate 
of Druglikeness (QED) 
scores as many as 
possible
oSearching latent space by 
gradient ascend

❑Our MoFlow generates 
more novel molecules 
with top QED scores!

KDD 2020 -- MOFLOW 41



EXP3: Property Optimization 

KDD 2020 -- MOFLOW 42



EXP4: Constrained Property 
Optimization 

❑Find a new molecular graph 𝐆′ from a seed molecular 
graph 𝐆
oTo maximize: similarity(𝐆, 𝐆′) and property Y 𝐆′ − Y(𝐆)
❖Tanimoto similarity of Morgan fingerprint

❖Target property Y: penalized logP (plogP), which is the octanol-water 
partition coefficients (logP) penalized by the synthetic accessibility (SA) 
score and number of long cycles.
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❑Best similarity

❑Second best 
improvement

❑More realistic
oAR+RL model tends to 
generate long chains

KDD 2020 -- MOFLOW 44

GCPN GraphAF

EXP4: Constrained Property 
Optimization 



KDD 2020 -- MOFLOW 47

EXP4: Constrained Property 
Optimization-Visualization.gif

COc1ccccc1C(=O)OC1=CC=C2
C(C1)C(C)=CC(C)(C)N2C(=O)C
=O

COc1ccccc1C(=O)Oc1cc2c3c(c1)
C(C)=CC(C)(C)N3C(=O)C2=O

PlogP: -15.96

PlogP: 0.04

+16.00



Summary

❑Novel MoFlow model for molecular graph generation
oA variant of Glow for bonds

oA novel Graph conditional flow for atoms given bonds

oNovel validity correction

oInvertible, fast inference and generation at one shot

❑The state-of-the-art results
oBest results for generation and reconstruction 
❖w.r.t. novelty, uniqueness, validity, and reconstruction rate

oBest results for QED property optimization
❖More drug-like molecules

oBest similarity scores for constraint optimization and second best 
improvement scores for plogP
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