

Neural Dynamics on Complex Networks

Chengxi Zang and Fei Wang Weill Cornell Medicine www.calvinzang.com

Network Dynamics of Complex Systems

Brain and Bioelectrical flow

Social Networks and Information flow

Transportation and Traffic flow

Ecological Systems and Energy flow

Problem

Brain and Bioelectrical flow

How to model and predict these network dynamics?

Problem: Math Formulation

Learning Dynamics on Networks/Graphs

- •Graph: G = (V, E), V represents nodes, E represents edges.
- Dynamics of nodes: $X(t) \in \mathbb{R}^{n \times d}$ changes over continuous time t,
- where n is the number of nodes, d is the number of features
 How dynamics $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$ change over continuous-time on the graph G?

Problem as a Prediction Task

Continuous-time Network Dynamics Prediction:

olnput: G, $\{\widehat{X(t_1)}, \widehat{X(t_2)}, \dots, \widehat{X(t_T)} | 0 \le t_1 < \dots < t_T\}, t_1 < \dots < t_T$ are arbitrary time moments with irregular time intervals.

•?A model of dynamics on graphs $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$ •**Output**: to predict X(t) at an arbitrary time moment

Continuous-time network dynamics prediction:

oInput: G, $\{\widehat{X(t_1)}, \widehat{X(t_2)}, \dots, \widehat{X(t_T)} | 0 \le t_1 < \dots < t_T\}, t_1 < \dots < t_T$ are <u>arbitrary</u> <u>time moments</u>

• A model of dynamics on graphs $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$ • Output: to predict X(t) at an arbitrary time moment

□(Special case) Structured sequence prediction oInput: G, $\{\widehat{X[1]}, \widehat{X[2]}, ..., \widehat{X[T]} | 0 \le 1 < \dots < T\}$, an <u>ordered sequence</u> oOutput: to predict next k steps X[T + k]?

□(Special case) Node (semi-supervised) classification oInput: G, $\hat{X} = [\hat{X}, Mask \odot \hat{Y}]$ a snapshot of features and node labels oOutput: to complete $[\hat{X}, \hat{Y}]$?

Why Network Dynamics Matter?

To understand, predict, and control real-world complex systems in engineering and science. Brain dynamics, traffic dynamics, social dynamics, etc.

Why is it Hard?

Complex systems:

 OHigh-dimensionality and Complex interactions
 ○≥ 100 nodes, ≥ 1000 interactions

Dynamics:

Continuous-time, Nonlinear

Structural-dynamic dependencies:

 Difficult to be modeled by simple mechanistic models, no clear knowledge of their mechanisms

Why is it Hard?

- **Linear Dynamics**

10

Related Works I: Learning Continuous Time Dynamics

To learn continuous-time dynamics

 A clear knowledge of the mechanisms, small systems, few interaction terms, first principle from physical laws, mechanistic models,

Related Works I: Dynamical Origins of Distribution Functions

□1-D distribution \leftarrow → Ordinary Differential Equation

	DATA DISTRIBUTION		SURVIVAL ANALYSIS		Dynamic System		
	f(x)	F(x)	$\lambda(x)$	$\Lambda(x)$	$x_i(t)$	Dynamics $\frac{dx_i(t)}{dt}$	INTERPRETATION
Exponential	$\alpha e^{-\alpha x}$	$1 - e^{-\alpha x}$	α	αx	$\frac{\ln(\frac{t}{t_i})}{\alpha}$	$\frac{1}{\alpha t}$	GC
Power law	$\alpha x_0^{\alpha} x^{-(\alpha+1)}$	$1 - \left(\frac{x_0}{x}\right)^{\alpha}$	$\frac{\alpha}{x}$	$a \ln \frac{x}{x_0}$	$x_0(\frac{t}{t_i})^{\frac{1}{lpha}}$	$\frac{x_i(t)}{\alpha t}$	PA + GC
STRETCHED exponential	$\frac{\alpha}{x^{\theta}}e^{-\frac{\alpha(x^{1-\theta}-x_0^{1-\theta})}{1-\theta}}$	$1 - e^{-\frac{\alpha(x^{1-\theta} - x_0^{1-\theta})}{1-\theta}}$	$\frac{\alpha}{x^{\theta}}$	$\frac{\alpha}{1-\theta}(x^{1-\theta}-x_0^{1-\theta})$	$[\ln(\tfrac{t}{t_i})\tfrac{1-\theta}{\alpha}+x_0^{1-\theta}]^{\tfrac{1}{1-\theta}}$	$\frac{x_i^{\theta}(t)}{\alpha t}$	Non-linear PA + GC
WEIBULL	$\alpha \lambda^{\alpha} x^{\alpha-1} e^{-(\lambda x)^{\alpha}}$	$1 - e^{-(\lambda x)^{\alpha}}$	$\alpha \lambda^{\alpha} x^{\alpha-1}$	$(\lambda x)^{lpha}$	$\frac{(\ln \frac{t}{t_i})\frac{1}{\alpha}}{\lambda}$	$\frac{x_i^{1-\alpha}(t)}{\lambda^{\alpha}\alpha t}$	Non-linear PA + GC
Log-logistic	$\frac{\lambda \alpha (\lambda x)^{\alpha - 1}}{[1 + (\lambda x)^{\alpha}]^2}$	$1 - \frac{1}{1 + (\lambda x)^{\alpha}}$	$\frac{\lambda \alpha (\lambda x)^{\alpha - 1}}{1 + (\lambda x)^{\alpha}}$	$\ln[1+(\lambda x)^{\alpha}]$	$\frac{(\frac{t}{t_i}-1)^{\frac{1}{\alpha}}}{\lambda}$	$\frac{x_i(t)}{\alpha(t-t_i)}$	PA + Since then GC
Sigmoid	$\frac{e^x}{(1+e^x)^2}$	$1 - \frac{1}{1 + e^{X}}$	$\frac{e^X}{1+e^X}$	$\ln(1+e^x)$	$\ln(\frac{t}{t_i}-1)$	$\frac{1}{t-t_i}$	Since then GC
Log-normal *	$\frac{1}{x\sqrt{2\pi}}e^{-\frac{(\ln x)^2}{2}}$	$\Phi(\ln x)$	$\frac{f(x)}{1 - \Phi(\ln x)}$	$-\ln[1-\Phi(\ln x)]$	$e^{\Phi^{-1}(1-\frac{t_i}{t})}$	$x_i \frac{d\Phi^{-1}(z)}{dz} \frac{t_i}{t^2}$	PA + Square GC
Normal *	$\frac{1}{\sqrt{2\pi}}e^{-\frac{\chi^2}{2}}$	$\Phi(x)$	$\frac{f(x)}{1-\Phi(x)}$	$-\ln[1-\Phi(x)]$	$\Phi^{-1}(1-\frac{t_i}{t})$	$\frac{d\Phi^{-1}(z)}{dz}\frac{t_i}{t^2}$	Square GC
Uniform	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{1}{b-x}$	$\ln \frac{b-a}{b-x}$	$b - (b - a)\frac{t_i}{t}$	$\frac{b-x_i(t)}{t}$	EL + GC

Table from Zang etc., KDD2019, <u>Dynamical Origins of Distribution Functions</u>

Data-driven Dynamics for Small Systems

Data-driven discovery of ODEs/ PDEs

OSparse Regression

Residual NetworkEtc.

Small systems!

<10 nodes & interactionsCombinatorial complexityNot for complex systems

Image from: Brunton et al. 2016. <u>Discovering governing equations from data by</u> sparse identification of nonlinear dynamical systems. PNAS

Related Works II: Structured Sequence Learning

Defined characteristics

 Dynamics on graphs are regularly-sampled with same time intervals, an ordered sequence instead of physical time.

Temporal Graph Neural Networks

RNN + CNN
RNN + GNN
☆X[t+1]=LSTM(GCN([t], G))

Limitations:

Only ordered sequence instead of continuous physical time

Related Works III: Node (Semi-supervised) Classification

Defined characteristics

One-snapshot features and some nodes' labels on graphs
 Goal: to infer labels of each node

Graph Neural Networks

 \circ GCN,
 \circ GAT, etc. $Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$ \circ GAT, etc. $\vec{h}'_i = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha^k_{ij} \mathbf{W}^k \vec{h}_j \right)$ \Box Limitations

1 or 2 layers, over-smoothing when deep
Lacking a continuous-time dynamics view
To spread features or labels on graphs
Continuous-time: more fine-grained capturing diffusion

Kipf et al. 2016. <u>Semi-Supervised Classification with Graph Convolutional Networks</u> Velickovic et al. 2017. <u>Graph Attention Networks</u>

Goal: A Unified Framework

Once we LEARN a model of dynamics on graphs $\frac{dX(t)}{dt} = f(X(t), G, \theta, t)$

Continuous-time network dynamics prediction:

olnput: G, $\{\widehat{X(t_1)}, \widehat{X(t_2)}, \dots, \widehat{X(t_T)} | 0 \le t_1 < \dots < t_T\}, t_1 < \dots < t_T$ are <u>arbitrary</u> <u>time moments</u>

Output: to predict X(t) at an arbitrary time moment

□(Special case) Structured sequence prediction oInput: G, $\{\widehat{X[1]}, \widehat{X[2]}, ..., \widehat{X[T]} | 0 \le 1 < \cdots < T\}$, an <u>ordered sequence</u> oOutput: to predict next k steps X[T + k]

□(Special case) Node (semi-supervised) classification o Input: G, $\hat{X} = [\hat{X}, Mask \odot \hat{Y}]$ <u>a snapshot</u> of features and node labels o Output: to complete $[\hat{X}, \hat{Y}]$

Differential Equation Systems

 Differential Equations are general tools to describe the dynamics of systems

Graph Neural Networks

Graphs are general tools to describe the structures of systems
 GNNs, Temporal GNNs, are the state-of-the-art computational tools driven by data for linked data

How to leverage both <u>Differential Equation</u> systems and <u>Graph Neural Networks</u>?

Neural Dynamics on Complex Networks (NDCN)

- **Differential Equations + Graph Neural Networks** Differential Equation Systems $\frac{dX(t)}{dt} = f(X(t), G, W, t)$ modeled by a Graph Neural Network.
 - o "Deep" and Continuous Depth: $X(t) = X(0) + \int_0^t f(X(\tau), G, W, \tau) d\tau$ for states at arbitrary time $t \in [0, T]$
 - \circ Or modeling network dynamics in a latent space $X_{h}(t)$, with encoding and decoding layers
 - Learned as an optimization problem for running dynamics and terminal loss

$$\begin{aligned} \underset{W(t),\Theta(T)}{\operatorname{arg\,min}} & \mathcal{L} = \int_{0}^{T} \mathcal{R}\Big(X,G,W,t\Big) \, dt + \mathcal{S}\Big(Y(X(T),\Theta)\Big) \\ \text{subject to} & X_{h}(t) = f_{e}\Big(X(t),W_{e}\Big), \ X(0) = X_{0} \\ & X_{h}(t) = X_{h}(0) + \int_{0}^{t} f\Big(X_{h},G,W_{h},\tau\Big) d\tau \\ & X(t) = f_{d}\Big(X_{h}(t),W_{d}\Big) \end{aligned}$$

A NDCN Instance

ODEs + GNN

- Differential Equation systems: $\frac{dX(t)}{dt} =$ f(X(t), G, W, t) is modeled by a Graph Neural Network.
- \circ Continuous-depth Deep model: X(t) = $X(0) + \int_0^t f(X(\tau), G, W, \tau) d\tau$ for dynamics at arbitrary time t

argn W_* sub

$$\begin{aligned} \min_{b_{*}} & \mathcal{L} = \int_{0}^{T} |X(t) - \hat{X(t)}| \, dt \\ \text{ject to} & X_{h}(t) = \tanh\left(X(t)W_{e} + b_{e}\right)W_{0} + b_{0} \\ & \frac{dX_{h}(t)}{dt} = \text{ReLU}\left(\Phi X_{h}(t)W + b\right), X_{h}(0) \\ & X(t) = X_{h}(t)W_{d} + b_{d} \end{aligned}$$

 $\Phi = D^{-\frac{1}{2}}(D-A)D^{-\frac{1}{2}} \in \mathbb{R}^{n \times n}$

Interpretation from Graph Neural Networks

GNN, Residual-GNN, ODE-GNN, NDCN

• GNN: $X_{t+1} = f(G, X_t, \theta_t)$ • Residual-GNN: $X_{t+1} = X_t + f(G, X_t, \theta_t)$ • ODE-GNN: $X_{t+\delta} = X_t + \delta * f(G, X_t, \theta_t), \delta \to 0$ • $\frac{dX}{dt} = f(G, X_t, \theta_t)$

ODE-GNN in a latent space: NDCN

Our model is an ODE-GNN

OContinuous layers/time

- ○A real (integer) number of depth → time
- **OLatent space dynamics**

Interpretation from RNN and Temporal GNN

RNN, Temporal GNN and our NDCN

•RNN or Temporal GNN

$$\mathbf{\bullet} h_t = f(h_{t-1}, x_t, \theta_t) \quad \text{or } h_t = f(h_{t-1}, \mathbf{G} * \mathbf{x}_t, \theta_t)$$

 $\mathbf{\bullet} y_t = o(h_t, w_t)$

oResidual RNN or Residual Temporal GNN with skip connection

ODE-RNN or ODE-GNN ♦ $\frac{dh_t}{dt} = f(h_t, x_t, \theta_t)$ or $\frac{dh_t}{dt} = f(h_t, G * x_t, \theta_t)$ ♦ $y_t = o(h_t, w_t)$

Our model is an ODE-GNN

Learning continuous-time network dynamics

- Encompassing Temporal GNN by discretization
- Encompassing RNN by not using graph convolution

Exp1: Learning Continuous-time Network Dynamics

The Problem:

oInput: G, $\{\widehat{X(t_1)}, \widehat{X(t_2)}, \dots, \widehat{X(t_T)} | 0 \le t_1 < \dots < t_T\}, t_1 < \dots < t_T$ are arbitrary time moments with different time intervals

Output: X(t), t is an arbitrary time moment

♦ interpolation prediction: $t < t_T$ and $\neq \{t_1 < \cdots < t_T\}$

\diamondextrapolation prediction: t > t_T

Setups:

120 irregularly sampled snapshots of network dynamics
First 100: 80 for train 20 for testing interpolation
Last 20: testing for extrapolation

Canonical Network Dynamics in Physics and Biology

Real-world Dynamics on Graph (adjacency matrix A)•Heat diffusion: $\frac{d\overline{x_i(t)}}{dt} = -k_{i,j} \sum_{j=1}^n A_{i,j} (\overline{x_i(t)} - \overline{x_j(t)})$ •Mutualistic interaction: $\frac{d\overline{x_i(t)}}{dt} = b_i + \overline{x_i(t)} (1 - \frac{\overline{x_i(t)}}{k_i}) (\frac{\overline{x_i(t)}}{c_i} - 1) + \sum_{j=1}^n A_{i,j} \frac{\overline{x_i(t)} + \overline{x_j(t)}}{d_i + \overline{e_i x_i(t)} + h_j \overline{x_j(t)}}$ •Gene regulatory: $\frac{dx_i(t)}{dt} = -b_i \overline{x_i(t)}^f + \sum_{j=1}^n A_{i,j} \frac{\overline{x_j(t)}^h}{\overline{x_j(t)}^{h+1}}$

Graphs

oGrid, Random, power-law, small-world, community, etc.

Exp1: Learning Continuous-time Network Dynamics

Baselines: ablation models

ODE-GNN without encoding/decoding layers
 Neural ODE Network

No graph diffusion

•NDCN without control parameter W

Determined dynamics

 $\operatorname*{argmin}_{W_{*},b_{*}}$

subject to

$$\mathcal{L} = \int_0^T |X(t) - \hat{X(t)}| dt$$

$$X_{h}(t) = \tanh\left(X(t)W_{e} + b_{e}\right)W_{0} + b_{0}$$
$$\frac{dX_{h}(t)}{dt} = \operatorname{ReLU}\left(\Phi X_{h}(t)W + b\right), X_{h}(0)$$
$$X(t) = X_{h}(t)W_{d} + b_{d}$$

Chen et al. 2019. Neural Ordinary Differential Equations. NeurIPS.

Exp1: Heat Diffusion on Different Graphs

Exp1: Mutualistic Dynamics on Different Graphs

Exp1: Gene Dynamics on Different Graphs

Exp1: Results for Continuous-time Extrapolation

Mean Absolute Percentage Error 20 runs for 3 dynamics on 5 graphs Our model achieves lowest error

Table 1: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network dynamics accurately. Each result is the normalized ℓ_1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each method.

		Grid	Random	Power Law	Small World	Community
	No-Encode	29.9 ± 7.3	27.8 ± 5.1	24.9 ± 5.2	24.8 ± 3.2	30.2 ± 4.4
Heat	No-Graph	30.5 ± 1.7	5.8 ± 1.3	6.8 ± 0.5	10.7 ± 0.6	24.3 ± 3.0
Diffusion	No-Control	73.4 ± 14.4	28.2 ± 4.0	25.2 ± 4.3	30.8 ± 4.7	37.1 ± 3.7
	NDCN	4.1 ± 1.2	4.3 ± 1.6	$\bf 4.9 \pm 0.5$	2.5 ± 0.4	4.8 ± 1.0
	No-Encode	45.3 ± 3.7	9.1 ± 2.9	29.9 ± 8.8	54.5 ± 3.6	14.5 ± 5.0
Mutualistic	No-Graph	56.4 ± 1.1	6.7 ± 2.8	14.8 ± 6.3	54.5 ± 1.0	9.5 ± 1.5
Interaction	No-Control	140.7 ± 13.0	10.8 ± 4.3	106.2 ± 42.6	115.8 ± 12.9	16.9 ± 3.1
	NDCN	$\bf 26.7 \pm 4.7$	3.8 ± 1.8	7.4 ± 2.6	$\bf 14.4 \pm 3.3$	3.6 ± 1.5
	No-Encode	31.7 ± 14.1	17.5 ± 13.0	33.7 ± 9.9	25.5 ± 7.0	26.3 ± 10.4
Gene	No-Graph	13.3 ± 0.9	12.2 ± 0.2	43.7 ± 0.3	15.4 ± 0.3	19.6 ± 0.5
Regulation	No-Control	65.2 ± 14.2	68.2 ± 6.6	70.3 ± 7.7	58.6 ± 17.4	64.2 ± 7.0
	NDCN	16.0 ± 7.2	$\bf 1.8 \pm 0.5$	3.6 ± 0.9	$\bf 4.3 \pm 0.9$	2.5 ± 0.6

Exp1: Results for Continuous-time Interpolation

Interpolation is easier than extrapolationOur model achieves lowest error

Table 2: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network dynamics accurately. Each result is the normalized ℓ_1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each method.

		Grid	Random	Power Law	Small World	Community
	No-Encode	32.0 ± 12.7	26.7 ± 4.4	25.7 ± 3.8	27.9 ± 7.3	35.0 ± 6.3
Heat	No-Graph	41.9 ± 1.8	9.4 ± 0.6	18.2 ± 1.5	25.0 ± 2.1	25.0 ± 1.4
Diffusion	No-Control	56.8 ± 2.8	32.2 ± 7.0	33.5 ± 5.7	40.4 ± 3.4	39.1 ± 4.5
	NDCN	3.2 ± 0.6	3.2 ± 0.4	5.6 ± 0.6	3.4 ± 0.4	$\bf 4.3 \pm 0.5$
	No-Encode	28.9 ± 2.0	19.9 ± 6.5	34.5 ± 13.4	27.6 ± 2.6	25.5 ± 8.7
Mutualistic	No-Graph	28.7 ± 4.5	7.8 ± 2.4	23.2 ± 4.2	26.9 ± 3.8	14.1 ± 2.4
Interaction	No-Control	72.2 ± 4.1	22.5 ± 10.2	63.8 ± 3.9	67.9 ± 2.9	33.9 ± 12.3
	NDCN	7.6 ± 1.1	6.6 ± 2.4	$\bf 6.5 \pm 1.3$	4.7 ± 0.7	7.9 ± 2.9
	No-Encode	39.2 ± 13.0	14.5 ± 12.4	33.6 ± 10.1	27.7 ± 9.4	21.2 ± 10.4
Gene	No-Graph	25.2 ± 2.3	11.9 ± 0.2	39.4 ± 1.3	15.7 ± 0.7	18.9 ± 0.3
Regulation	No-Control	66.9 ± 8.8	31.7 ± 5.2	40.3 ± 6.6	49.0 ± 8.0	35.5 ± 5.3
c .	NDCN	5.8 ± 1.0	1.5 ± 0.6	2.9 ± 0.5	4.2 ± 0.9	2.3 ± 0.6

Exp2: Structured Sequence Prediction

The Problem (Structured sequence prediction):

oInput: G, $\{\widehat{X[1]}, \widehat{X[2]}, \dots, \widehat{X[T]} | 0 \le 1 < \dots < T\}, 1, \dots T$ are regularly-sampled with the same time intervals

with an emphasis on an ordered sequence rather than time

Output: *X*[T + M], next M steps

extrapolation prediction

Setups:

100 regularly sampled snapshots of network dynamics
 First 80 for training, last 20 for testing

Exp2: Structured Sequence Prediction

Baselines: temporal-GNN models

LSTM-GNN
 X[t+1]=LSTM(GCN([t], G))
 GRU-GNN
 X[t+1]=GRU(GCN([t], G))
 RNN-GNN
 X[t+1]=RNN(GCN([t], G))

Exp2: Structured Sequence Prediction

Results:

oOur model achieves lowest error with much fewer parameters

The learnable parameters:

oLSTM-GNN: 84,890, GRU-GNN: 64,770, RNN-GNN: 24,530 • <u>NDCN: 901</u>

Table 3: **Regularly-sampled Extrapolation Prediction.** Our NDCN predicts different structured sequences accurately. Each result is the normalized ℓ_1 error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each method.

		Grid	Random	Power Law	Small World	Community
	LSTM-GNN	12.8 ± 2.1	21.6 ± 7.7	12.4 ± 5.1	11.6 ± 2.2	13.5 ± 4.2
Heat	GRU-GNN	11.2 ± 2.2	9.1 ± 2.3	8.8 ± 1.3	9.3 ± 1.7	7.9 ± 0.8
Diffusion	RNN-GNN	18.8 ± 5.9	25.0 ± 5.6	18.9 ± 6.5	21.8 ± 3.8	16.1 ± 0.0
	NDCN	4.3 ± 0.7	4.7 ± 1.7	5.4 ± 0.4	2.7 ± 0.4	5.3 ± 0.7
•	LSTM-GNN	51.4 ± 3.3	24.2 ± 24.2	27.0 ± 7.1	58.2 ± 2.4	25.0 ± 22.3
Mutualistic	GRU-GNN	49.8 ± 4.1	$\bf 1.0 \pm 3.6$	12.2 ± 0.8	51.1 ± 4.7	3.7 ± 4.0
Interaction	RNN-GNN	56.6 ± 0.1	8.4 ± 11.3	12.0 ± 0.4	57.4 ± 1.9	8.2 ± 6.4
	NDCN	29.8 ± 1.6	4.7 ± 1.1	11.2 ± 5.0	15.9 ± 2.2	3.8 ± 0.9
	LSTM-GNN	27.7 ± 3.2	67.3 ± 14.2	38.8 ± 12.7	13.1 ± 2.0	53.1 ± 16.4
Gene Regulation	GRU-GNN	24.2 ± 2.8	50.9 ± 6.4	35.1 ± 15.1	11.1 ± 1.8	46.2 ± 7.6
	RNN-GNN	28.0 ± 6.8	56.5 ± 5.7	42.0 ± 12.8	14.0 ± 5.3	46.5 ± 3.5
	NDCN	18.6 ± 9.9	2.4 ± 0.9	$\mathbf{4.1 \pm 1.4}$	5.5 ± 0.8	2.9 ± 0.5

Problem: One-snapshot case

Input: G, X, a part of labels Y(X)
Output: To Complete Y(X)

Datasets:

0

Table 11: Statistics for three real-world citation network datasets. N, E, D, C represent number of nodes, edges, features, classes respectively.

Dataset	N	E	D	С	Train/Valid/Test
Cora Citeseer Pubmed	$2,708 \\ 3,327 \\ 19,717$	$5,429 \\ 4,732 \\ 44,338$	$\begin{array}{c} 1,433 \\ 3,703 \\ 500 \end{array}$	$7 \\ 6 \\ 3$	140/500/1,000 120/500/1,000 60/500/1,000

Baselines

Graph Convolution Network (GCN)
Attention-based GNN (AGNN)
Graph Attention Networks (GAT)

$$Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A}XW^{(0)}\right)W^{(1)}\right)$$

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Kipf et al. 2016. <u>Semi-Supervised Classification with Graph Convolutional Networks</u> Velickovic et al. 2017. <u>Graph Attention Networks</u>

Interpretation of our model

oInput: G, $[X, Mask \odot Y]$, features and some node labels oOutput: To complete Y

 Model: A graph dynamics to spread features and labels on graph over continuous time T

$$\mathbf{\hat{v}} \frac{d[X,Y]}{dt} = \mathbf{f}(\mathbf{G}, \mathbf{X}, \mathbf{Y}, \mathbf{W}, \mathbf{t})$$

$$\underset{W_e, b_e, W_d, b_d}{\operatorname{argmin}} \qquad \mathcal{L} = \int_0^T \mathcal{R}(t) \, dt - \sum_{i=1}^n \sum_{k=1}^c \hat{Y}_{i,k}(T) \log Y_{i,k}(T)$$

$$subject \text{ to } \qquad X_h(0) = \tanh\left(X(0)W_e + b_e\right)$$

$$\frac{dX_h(t)}{dt} = \operatorname{ReLU}\left(\Phi X_h(t)\right)$$

$$Y(T) = \operatorname{softmax}(X_h(T)W_d + b_d)$$

Metrics

Accuracy over 100 runs

Results

 Very competitive results
 Continuous-time dynamics on graphs
 Best results at time T=1.2
 Continuous depth/time Table 4: Test mean accuracy with standard deviation in percentage (%) over 100 runs. Our NDCN model gives very competitive results compared with many GNN models.

Figure 5: Our NDCN model captures continuous-time dynamics. Mean classification accuracy of 100 runs over terminal time when given a specific α . Insets are the accuracy over the two-dimensional space of terminal time and α

□A novel NDCN model, which is a

Continuous-depth GNN
 Continuous-time (temporal) GNN
 Graph Neural ODE

Our NDCN, a unified framework to solve

•Continuous-time network dynamics prediction:

Structured sequence prediction

Node (semi-supervised) regression/classification at one-snapshot
 good performance with less parameters.

ODE-GNN model

 A potential data-driven method to model structure and dynamics of complex systems in a unified framework

Neural Dynamics on Complex Networks

Chengxi Zang and Fei Wang Weill Cornell Medicine www.calvinzang.com