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Network Dynamics of Complex Systems
Brain and Bioelectrical flow Transportation and Traffic flow

Social Networks and Information flow Ecological Systems and Energy flow
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Problem
Brain and Bioelectrical flow Transportation and Traffic flow

Social Networks and Information flow Ecological Systems and Energy flow

How to model and predict these network 
dynamics?
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Problem: Math Formulation

❑Learning Dynamics on Networks/Graphs
oGraph: 𝐺 = (𝑉, 𝐸) ,  V represents nodes, 𝐸 represents 
edges.

oDynamics of nodes: 𝑋 𝑡 ∈ ℝ𝑛×𝑑 changes over continuous 
time t,
❖where 𝑛 is the number of nodes, 𝑑 is the number of features

oHow dynamics  
𝒅𝑿(𝒕)

𝒅𝒕
= 𝒇(𝑿 𝒕 , 𝑮, 𝜽, 𝒕) change over 

continuous-time on the graph 𝐺?
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Problem as a Prediction Task

❑Continuous-time Network Dynamics 
Prediction:
oInput: G, 𝑋 𝑡1 , 𝑋 𝑡2 , … , 𝑋 𝑡𝑇 0 ≤ 𝑡1 < ⋯ < 𝑡𝑇 , 𝑡1 <
⋯ < 𝑡𝑇 are arbitrary time moments with irregular time 
intervals.

o?A model of dynamics on graphs 
𝒅𝑿(𝒕)

𝒅𝒕
= 𝒇(𝑿 𝒕 , 𝑮, 𝜽, 𝒕)

oOutput: to predict 𝑋 𝑡 at an arbitrary time moment
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Problem: Prediction Tasks

❑Continuous-time network dynamics prediction:
oInput: G, 𝑋 𝑡1 , 𝑋 𝑡2 , … , 𝑋 𝑡𝑇 0 ≤ 𝑡1 < ⋯ < 𝑡𝑇 , 𝑡1 < ⋯ < 𝑡𝑇 are arbitrary 

time moments

oA model of dynamics on graphs 
𝑑𝑋(𝑡)

𝑑𝑡
= 𝑓(𝑋 𝑡 , 𝐺, 𝜃, 𝑡)

oOutput: to predict 𝑋 𝑡 at an arbitrary time moment

❑(Special case) Structured sequence prediction
oInput: G, 𝑋[1],𝑋[2], … ,𝑋[𝑇] 0 ≤ 1 < ⋯ < 𝑇 , an ordered sequence

oOutput: to predict next k steps 𝑋 𝑇 + 𝑘 ?

❑(Special case) Node (semi-supervised) classification
oInput: G, 𝑋 = [ 𝑋,𝑀𝑎𝑠𝑘 ⊙ 𝑌] a snapshot of features and node labels

oOutput: to complete [ 𝑋, 𝑌] ?
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Why Network Dynamics Matter?

❑To understand, predict, and control real-world 
complex systems in engineering and science.
oBrain dynamics, traffic dynamics, social dynamics, etc.
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Why is it Hard?

❑Complex systems: 
oHigh-dimensionality and 
Complex interactions
o≥ 100 nodes, ≥ 1000 interactions

❑Dynamics: 
oContinuous-time, Nonlinear

❑Structural-dynamic 
dependencies: 
oDifficult to be modeled by simple 
mechanistic models, no clear 
knowledge of their mechanisms
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+ →

+ →

+ →

Linear Dynamics

Linear Dynamics

Non-Linear Dynamics

𝒇(𝑿 𝒕 , 𝑮, 𝜽, 𝒕)

?
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❑Examples of Dynamics on Graphs

Why is it Hard?



Related Works I: Learning Continuous Time 
Dynamics

❑To learn continuous-time dynamics
oA clear knowledge of the mechanisms, small systems, few interaction terms, 

first principle from physical laws, mechanistic models,

𝑭 =
𝑑(𝑚𝒗)

𝑑𝑡
𝑴𝒊𝒄𝒓𝒐:𝑴𝒂𝒄𝒓𝒐: 𝑪𝒉𝒂𝒐𝒔:
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Related Works I: Dynamical Origins of 
Distribution Functions

❑1-D distribution → Ordinary Differential Equation
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Table from Zang etc., KDD2019,  Dynamical Origins of Distribution Functions

https://dl.acm.org/doi/10.1145/3292500.3330842


Data-driven Dynamics for Small Systems

❑Data-driven discovery of ODEs/ PDEs
oSparse Regression

oResidual Network

oEtc.

❑Small systems!
o<10 nodes & interactions

oCombinatorial complexity

oNot for complex systems

Image from: Brunton et al. 2016. Discovering governing equations from data by 

sparse identification of nonlinear dynamical systems. PNAS
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https://www.pnas.org/content/113/15/3932.short


Related Works II: Structured Sequence Learning

❑Defined characteristics
oDynamics on graphs are regularly-sampled with same time 
intervals, an ordered sequence instead of physical time.

❑Temporal Graph Neural Networks
oRNN + CNN

oRNN + GNN

❖X[t+1]=LSTM(GCN([t], G))

❑Limitations: 
oOnly ordered sequence instead of continuous physical time
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Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks

https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf


Related Works III: Node (Semi-supervised) 
Classification

❑Defined characteristics
oOne-snapshot features and some nodes’ labels on graphs

oGoal: to infer labels of each node

❑Graph Neural Networks
oGCN, 

oGAT, etc.

❑Limitations
o1 or 2 layers, over-smoothing when deep

oLacking a continuous-time dynamics view
❖To spread features or labels on graphs

❖Continuous-time: more fine-grained capturing diffusion
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Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks

Velickovic et al. 2017. Graph Attention Networks

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903


Goal: A Unified Framework

❑Once we LEARN a model of dynamics on graphs 
𝑑𝑋(𝑡)

𝑑𝑡
=

𝑓(𝑋 𝑡 , 𝐺, 𝜃, 𝑡)

❑Continuous-time network dynamics prediction:
oInput: G, 𝑋 𝑡1 , 𝑋 𝑡2 , … , 𝑋 𝑡𝑇 0 ≤ 𝑡1 < ⋯ < 𝑡𝑇 , 𝑡1 < ⋯ < 𝑡𝑇 are arbitrary 

time moments

oOutput: to predict 𝑋 𝑡 at an arbitrary time moment

❑(Special case) Structured sequence prediction
oInput: G, 𝑋[1],𝑋[2], … ,𝑋[𝑇] 0 ≤ 1 < ⋯ < 𝑇 , an ordered sequence

oOutput: to predict next k steps 𝑋 𝑇 + 𝑘

❑(Special case) Node (semi-supervised) classification
oInput: G, 𝑋 = [ 𝑋,𝑀𝑎𝑠𝑘 ⊙ 𝑌] a snapshot of features and node labels

oOutput: to complete [ 𝑋, 𝑌]
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Our Idea

❑Differential Equation Systems 
oDifferential Equations are general tools to describe the dynamics 
of systems 

❑Graph Neural Networks
oGraphs are general tools to describe the structures of systems

oGNNs, Temporal GNNs, are the state-of-the-art computational 
tools driven by data for linked data

❑How to leverage both Differential Equation systems 
and Graph Neural Networks?
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Neural Dynamics on Complex Networks (NDCN)

❑Differential Equations + Graph Neural Networks
oDifferential Equation Systems 

𝒅𝑿(𝒕)

𝒅𝒕
= 𝒇 𝑿 𝐭 , 𝐆,𝑾, 𝐭 modeled by a Graph 

Neural Network.

o“Deep” and Continuous Depth: 𝑋 𝒕 = 𝑿 𝟎 + 
𝟎

𝒕
𝒇 𝑿 𝝉 , 𝐆,𝑾, 𝝉 𝒅𝝉 for 

states at arbitrary time 𝑡 ∈ [0, 𝑇]
oOr modeling network dynamics in a latent space 𝑋𝐡 𝒕 , with encoding and 
decoding layers
oLearned as an optimization problem for running dynamics and terminal 
loss
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❑ODEs + GNN

oDifferential Equation systems: 
𝒅𝑿(𝒕)

𝒅𝒕
=

𝒇 𝑿 𝐭 , 𝐆,𝑾, 𝐭 is modeled by a Graph 
Neural Network.

oContinuous-depth Deep model: 𝑋 𝒕 =

𝑿 𝟎 + 𝟎
𝒕
𝒇 𝑿 𝝉 , 𝐆,𝑾, 𝝉 𝒅𝝉 for dynamics 

at arbitrary time 𝑡

A NDCN Instance



Interpretation from Graph Neural Networks

Residual Differential NDCN
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❑GNN, Residual-GNN, ODE-GNN, 
NDCN
oGNN: 𝑋𝑡+1 = 𝑓(𝐺, 𝑋𝑡 , 𝜃𝑡)

oResidual-GNN: 𝑋𝑡+1 = 𝑋𝑡 + 𝑓(𝐺, 𝑋𝑡 , 𝜃𝑡)

oODE-GNN: 𝑋𝑡+𝛿 = 𝑋𝑡 + 𝛿 ∗ 𝑓 𝐺, 𝑋𝑡 , 𝜃𝑡 , 𝛿 → 0

❖
𝑑𝑋

𝑑𝑡
= 𝑓 𝐺, 𝑋𝑡 , 𝜃𝑡

oODE-GNN in a latent space: NDCN

❑Our model is an ODE-GNN
oContinuous layers/time

oA real (integer) number of depth →
time

oLatent space dynamics



Interpretation from RNN and Temporal GNN

❑RNN, Temporal GNN and our NDCN
oRNN or Temporal GNN
❖ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡 , 𝜃𝑡 or ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝐺 ∗ 𝑥𝑡 , 𝜃𝑡
❖𝑦𝑡 = 𝑜 ℎ𝑡 , 𝑤𝑡
oResidual RNN  or Residual Temporal GNN with skip connection
❖ℎ𝑡 = ℎ𝑡−1 + 𝑓 ℎ𝑡−1, 𝑥𝑡 , 𝜃𝑡 or  ℎ𝑡 = ℎ𝑡−1 + 𝑓 ℎ𝑡−1, 𝐺 ∗ 𝑥𝑡 , 𝜃𝑡
❖𝑦𝑡 = 𝑜 ℎ𝑡 , 𝑤𝑡

oODE-RNN  or ODE-GNN

❖
𝑑ℎ𝑡

𝑑𝑡
= 𝑓 ℎ𝑡 , 𝑥𝑡 , 𝜃𝑡 or  

𝑑ℎ𝑡

𝑑𝑡
= 𝑓 ℎ𝑡 , 𝐺 ∗ 𝑥𝑡 , 𝜃𝑡

❖𝑦𝑡 = 𝑜 ℎ𝑡 , 𝑤𝑡

❑Our model is an ODE-GNN
❖Learning continuous-time network dynamics
❖Encompassing Temporal GNN by discretization
❖Encompassing RNN by not using graph convolution
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Exp1: Learning Continuous-time Network Dynamics

❑The Problem:
oInput: G, 𝑋 𝑡1 , 𝑋 𝑡2 , … , 𝑋 𝑡𝑇 0 ≤ 𝑡1 < ⋯ < 𝑡𝑇 , 𝑡1 < ⋯ < 𝑡𝑇 are 
arbitrary time moments with different time intervals

oOutput: 𝑋 𝑡 , t is an arbitrary time moment

❖interpolation prediction: 𝑡 < 𝑡𝑇 and ≠ 𝑡1 < ⋯ < 𝑡𝑇
❖extrapolation prediction: t > 𝑡𝑇

❑Setups:
o120 irregularly sampled snapshots of network dynamics

oFirst 100: 80 for train 20 for testing interpolation

oLast 20: testing for extrapolation
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❑Real-world Dynamics on Graph (adjacency matrix A)

oHeat diffusion: 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑘𝑖,𝑗 σ𝑗=1

𝑛 𝐴𝑖,𝑗(𝑥𝑖 𝑡 − 𝑥𝑗(𝑡))

oMutualistic interaction: 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑏𝑖 + 𝑥𝑖 𝑡 1 −

𝑥𝑖 𝑡

𝑘𝑖

𝑥𝑖 𝑡

𝑐𝑖
− 1 +

σ𝑗=1
𝑛 𝐴𝑖,𝑗

𝑥𝑖 𝑡 ∗𝑥𝑗(𝑡)

𝑑𝑖+𝑒𝑖𝑥𝑖 𝑡 +ℎ𝑗𝑥𝑗(𝑡)

oGene regulatory: 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑏𝑖𝑥𝑖 𝑡

𝑓 + σ𝑗=1
𝑛 𝐴𝑖,𝑗

𝑥𝑗 𝑡
ℎ

𝑥𝑗 𝑡
ℎ+1

❑Graphs
oGrid, Random, power-law, small-world, community, etc.

❑Visualizing dynamics on graph
oNodes are numbered by community labels 
oMapped into a ℕ2 grid
o𝑋(𝑡)𝑛∗1: ℕ2

→ ℝ

Canonical Network Dynamics 
in Physics and Biology

0

1 2 3 0
1 3

2 0
1 3

2
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Exp1: Learning Continuous-time Network Dynamics

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS 29

Differential NDCN

Chen et al. 2019. Neural Ordinary Differential Equations. NeurIPS.

❑Baselines: ablation models
oODE-GNN without encoding/decoding layers

oNeural ODE Network

❖No graph diffusion

oNDCN without control parameter 𝑊
❖Determined dynamics

http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf
https://arxiv.org/abs/1806.07366
http://www.calvinzang.com/file/2019KDD-Zang-PatternFormation.pdf


Exp1: Heat Diffusion on Different Graphs
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Exp1: Mutualistic Dynamics on Different Graphs
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Exp1: Gene Dynamics on Different Graphs
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Exp1: Results for Continuous-time Extrapolation

❑Mean Absolute Percentage Error

❑20 runs for 3 dynamics on 5 graphs

❑Our model achieves lowest error 
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Exp1: Results for Continuous-time Interpolation

❑Interpolation is easier than extrapolation

❑Our model achieves lowest error

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS 34



Exp2: Structured Sequence Prediction

❑The Problem (Structured sequence prediction):
oInput: G, 𝑋[1],𝑋[2], … ,𝑋[𝑇] 0 ≤ 1 < ⋯ < 𝑇 , 1, . . 𝑇 are regularly-
sampled with the same time intervals 
❖with an emphasis on an ordered sequence rather than time

oOutput: 𝑋[T + M], next M steps

❖extrapolation prediction

❑Setups:
o100 regularly sampled snapshots of network dynamics

oFirst 80 for training, last 20 for testing
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Exp2: Structured Sequence Prediction

❑Baselines: temporal-GNN models
oLSTM-GNN

❖X[t+1]=LSTM(GCN([t], G))

oGRU-GNN

❖X[t+1]=GRU(GCN([t], G))

oRNN-GNN

❖X[t+1]=RNN(GCN([t], G))
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Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks

https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf


Exp2: Structured Sequence Prediction

❑Results: 
oOur model achieves lowest error with much fewer parameters

❑The learnable parameters:
oLSTM-GNN: 84,890, GRU-GNN: 64,770, RNN-GNN: 24,530

oNDCN: 901
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Exp3. Node Semi-supervised Classification

❑Problem: One-snapshot case
oInput: G, 𝑋, a part of labels 𝑌(𝑋)

oOutput: To Complete 𝑌(𝑋)

❑Datasets:
o
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Exp3. Node Semi-supervised Classification

❑Baselines
oGraph Convolution Network (GCN)

oAttention-based GNN (AGNN)

oGraph Attention Networks (GAT)
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Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks

Velickovic et al. 2017. Graph Attention Networks

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903


Exp3. Node Semi-supervised Classification

❑Interpretation of our model
oInput: G, [𝑋,𝑀𝑎𝑠𝑘⨀𝑌], features and some node  labels

oOutput: To complete 𝑌

oModel: A graph dynamics to spread features and labels on graph 
over continuous time T

❖
𝑑[𝑋,𝑌]

𝑑𝑡
= f(G, X, Y,W, t)

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS 40



Exp3. Node Semi-supervised Classification

❑Metrics
oAccuracy over 100 runs

❑Results
oVery competitive results

oContinuous-time 
dynamics on graphs

oBest results at time T=1.2

❖Continuous depth/time
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Summary

❑A novel NDCN model, which is a
oContinuous-depth GNN

oContinuous-time (temporal) GNN

oGraph Neural ODE

❑Our NDCN, a unified framework to solve
oContinuous-time network dynamics prediction:

oStructured sequence prediction

oNode (semi-supervised) regression/classification at one-snapshot

good performance with less parameters.

❑ODE-GNN model 
oA potential data-driven method to model structure and dynamics of 
complex systems in a unified framework
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Neural Dynamics on Complex 
Networks
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