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Network Dynamics of Complex Systems

Brain and Bioelectrical flow | Transportation and Traffic flow

Ecological Systems and Energy flow
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Problem

Brain and Bioelectrical flow | Transportation and Traffic flow

How to model and predict these networ|
dynamics?
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Problem: Math Formulation

C Learning Dynamics on Networks /Graphs
oGraph: 'O «hO , 6 represents nodes, Orepresents

edges.

oDynamics of nodes: w(0) N 5 changes over continuous
time t,
x where € is the number of nodes, Qis the number of features

L N oaE e
oHow dynamics —g— B ==( 9y Ph< change over

continuous-time on the graph @



Problem as a Prediction Task

C Continuous -time Network Dynamics
Prediction:
olnput: G, {&(0 )0 )B o )|m o E 0o}
E 0 are arbitrary time moments with irreqular time
Intervals.

_ [

B L3, Phie

oOutput : to predict w(0) at an arbitrary time moment

0?A model of dynamics on graphs
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Problem: Prediction Tasks

C Continuous -time network dynamics prediction:

~ ~
~

olnput: G, {®(O)o )M RO )M 6 E o} E 0 arearbitrary

time moments

oA model of dynamics on graphs —  "Q&(O)H-R
oOutput: to predict ((0) at an arbitrary time moment

C (Special case) Structured sequence prediction
olnput: G, {®Gphog B hY'Y|m p E ¥, an ordered sequence
oOutput: to predict next k steps @'Y Q ?

C (Special case) Node (semi -supervised) classification
olnput: G, @ @ Wi SQW a snapshot of features and node labels
oOutput: to complete @ ?
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Why Network Dynamics Matter?

C To understand, predict, and control real -world
complex systems in engineering and science.
oBrain dynamics, traffic dynamics, social dynamics, etc.




Why Is it Hard?

C Complex systems:
oHigh-dimensionality and
Complex interactions
O P Ttmobdes, p mminteractions

C Dynamics:
oContinuous-time, Nonlinear

C Structural -dynamic
dependencies

oDifficult to be modeled by simple
mechanistic models, no clear
knowledge of their mechanisms
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Why Is it Hard?

C Examples of Dynamics on Graphs

+ Linear Dynamics A

N
N\
N
FS + Linear Dynamics A
Vo)
-
N\ . . 50
%% + Nonlinear Dynamch
PR :
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Related Works |: Learning Continuous Time
Dynamics

C To learn continuous -time dynamics

0A clear knowledge of the mechanisms, small systems, few interaction terms,
first principle from physical laws, mechanistic models,

ATOMIC &
MOLECULAR PHYSICS

dz

&

1l =IIIL M- - Q’g? (k:;.!i ¥(r,t) = [—hv‘+V{r,t]]w(r,t} F I=|=@j° %==(p—z)-y,
0
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Related Works I: Dynamical Origins of
Distribution Functions

C 1-D distribution a A Ordinary Differential Equation

DATA DISTRIBUTION SURVIVAL ANALYSIS DyNAMIC SYSTEM
X F(x) Alx Alx x;i(t DyNAMICS dxi(t) INTERPRETATION
dit
In() .
EXPONENTIAL ae ™ 1-e @ a ax — - GC
1 _
POWER LAW ax& x~+l) 1-(32)” & aln X xn(ril_)a I'(;} Pé‘g
1-0_,1-0 1-6_1-0
STRETCHED a _% i _% @ @ o 1-0 _ _1-8 In(£)1=0 4 410 xf’[r} NoN-LINEAR PA
EXPONENTIAL 0 -¢€ x? ig (X X ) [ (f; )Tt at +GC
1
(n L)a lagy Non- PA
a a-1,-(Ax)* -(Ax)% a a-1 a t i ON-LINEAR
WEIBULL al“x“ e l-e al”x (Ax) yl yUPT + GC
1
;oL
Aa(Ax)@-1 o Aa(Ax)@-1 o (1)@ x;(t) PA +
Loc-LoGrsTIC [14+(Ax)@ 2 L 1+(Ax)4 1+(Ax)% In[1 + (2x)7] A alt-t;) SINCE THEN GC
X 1 X 1
SIGMOID {1+€ex)2 1- %% — In(1 + e*) ]n(ril_ -1) r=n SINCE THEN GC
(Inx)?* “1_ Y -1 PA
) " 1 -5 flx) _ _ O (1-4) Cdd(z) 1 +
LOG-NORMAL e O(In x) o) In[1 - &(In x)] e Xi—g; 72 SQUARE GC
2
' 1 -% (x) - tj do~(z) t
NORMAL wridd d(x) T—d:% —In[1-®(x)] o7l(1- ) = SouaRre GC
_ _ L; b-x;(t EL +
UNIFORM — x=a = In =4 b-(b-a)L J:"[ ) o

Table from Zang etc., KDD2019ynamical Origins of Distribution Functions

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS

12



https://dl.acm.org/doi/10.1145/3292500.3330842

Data-driven Dynamics for Small Systems

C Data-driven discovery of ODEs/ PDEs

oSparse Regression
oResidual Network
oEtc.

C Small systems!
0<10 nodes & interactions
oCombinatorial complexity
oNot for complex systems

I. True Lorenz System
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II. Sparse Regression

to Solve for Active Terms in the Dynamics

Image from:Brunton et al. 2016. Discovering governing equations from data by

sparse identification of nonlinear dynamical system®NAS
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https://www.pnas.org/content/113/15/3932.short

Related Works II: Structured Sequence Learning

C Defined characteristics
oDynamics on graphs are regularly-sampled with same time

Intervals, an oro

ered sequence instead of physical time.

C Temporal Gra
ORNN + CNN
ORNN + GNN

oh Neural Networks

x X[t+1]=LSTM(GCN([t], G))

C Limitations:

0Only ordered sequence instead of continuous physical time

Seoet al. 2016. Structured Seqguence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019.A Comprehensive Survey on Graph Neural Networks
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https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf

Related Works Ill: Node (Semi -supervised)
Classification

C Defined characteristics
oOne-snapshot f eat ures and some nodeso | a
oGoal: to infer labels of each node

C Graph Neural Networks

0GCN, Z=f(XA)= H{'}ftl'llﬁ}{(}i RELU(AX[-if’{n}) W"“])
0GAT, etc. N 1 & koo
h; =0 (I\' ; EZ:V a;; W7h,;

C Limitations
0l or 2 layers, over-smoothing when deep

oLacking a continuous-time dynamics view
x To spread features or labels on graphs
x Continuous-time: more fine-grained capturing diffusion

Kipfet al. 2016. SemiSupervised Classification with Graph Convolutional Networks
Velickovicet al. 2017. Graph Attention Networks
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https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903

Goal: A Unified Framework

C Once we LEARN a model of dynamics on graphs ——
"QO(O)FD

C Continuous -time network dynamics prediction:

~
=

olnput: G, {(O)MyO )M RO )M o E o} E 0 arearbitrary
time moments

oOutput: to predict w(0) at an arbitrary time moment

C (Special case) Structured sequence prediction
olnput: G, {wp hdg B Y'Yt p E ¥, an ordered sequence
oOutput: to predict next k steps @'Y Q

C (Special case) Node (semi -supervised) classification
olnput: G, ® ) @i SQO a snapshot of features and node labels

oOutput: to complete D
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Our ldea

C Differential Equation Systems

oDifferential Equations are general tools to describe the dynamics
of systems

C Graph Neural Networks
oGraphs are general tools to describe the structures of systems

0GNNs, Temporal GNNs, are the state-of-the-art computational
tools driven by data for linked data

C How to leverage both Differential Equation systems
and Graph Neural Networks ?
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Neural Dynamics on Complex Networks (NDCN)

C Differential Equations + Graph Neural Networks
oDifferential Equation Systems —5—  [(=()F¢ F= i) modeled by a Graph
Neural Network. <
oiDeepd and Cond(idndous PVt hp Y™ Wor
states at arbitrary time oN TH'Y

0Or modeling network dynamics in a latent space « (4, with encoding and
decoding layers

oILearned as an optimization problem for running dynamics and terminal
0SS

T
argmin =~ L =[ '}'E(X, G.W. r) dt+S(Y(X{T},E}})
W (£).0(T) 0

subject to X;,{r}:ﬁ(}((r),wﬂ), X(0) = X,
F s
Xp (1) = X, (0) +/ f(Xh,G, Wh,f)dr
0

X{f}:fd(xh(t)slfd) 20



A NDCN Instance

C ODEs + GNN
IJ_<

oDifferential Equation systems: ——

B=(CDFE b= D is modeled by a Graph
Neural Network.

oContinuous-depth Deep model: (<4

L) PEWRE B Y™ Weor dynamics

at arbitrary time o
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