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Network Dynamics of Complex Systems

Brain and Bioelectrical flow _Transportation and Traffic flow

Social Networks and Information flow Ecological Systems and Energy flow
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Problem

Brain and Bioelectrical flow _Transportation and Traffic flow

How to model and predict these network
dynamics?
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Problem: Math Formulation

JLearning Dynamics on Networks/Graphs

oGraph: ¢ = (V,E), V represents nodes, E represents
edges.

oDynamics of nodes: X(t) € R™ ¢ changes over continuous
time t,

*where n is the number of nodes, d is the number of features

oHow dynamics d);—it) = f(X(t), G, 08,t) change over

continuous-time on the graph G?



Problem as a Prediction Task

JContinuous-time Network Dynamics
Prediction:
olnput: G, {X(t), X(t), ., X(tp)|0 <ty < -+ < tp} tg <
..« < tr are arbitrary time moments with irregular time
intervals.
dX(t)

o?A model of dynamics on graphs — = f(X(t), G0t

oOutput: to predict X(t) at an arbitrary time moment




Problem: Prediction Tasks

dContinuous-time network dynamics prediction:

olnput: G, {X (1), X(t3), ., X(tr)|0 <t < -+ < tp}, t; < -+ <ty are arbitrary
time moments

oA model of dynamics on graphs = f(X(t),G,6,t)
oOutput: to predict X(t) at an arbltrary time moment

J(Special case) Structured sequence prediction

olnput: G, {X[1],X[2], ..., X[T]|0 < 1 < --- < T}, an ordered sequence
oOutput: to predict next k steps X|T + k] ?

J(Special case) Node (semi-supervised) classification
olnput: G, X = [X, Mask © Y] a snapshot of features and node labels
oOutput: to complete [X, V] ?
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Why Network Dynamics Matter?

JTo understand, predict, and control real-world
complex systems in engineering and science.
oBrain dynamics, traffic dynamics, social dynamics, etc.

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS 7



Why is it Hard?

JComplex systems:
oHigh-dimensionality and
Complex interactions
o= 100 nodes, > 1000 interactions

IDynamics:
oContinuous-time, Nonlinear

dStructural-dynamic
dependencies:

oDifficult to be modeled by simple
mechanistic models, no clear
knowledge of their mechanisms
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Why is it Hard?

JExamples of Dynamics on Graphs

4 Linear Dynamics 9

?
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< 4 Linear Dynamics 9 - f(X(8),G,0,t)
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Related Works |I: Learning Continuous Time
Dynamics

1 To learn continuous-time dynamics

oA clear knowledge of the mechanisms, small systems, few interaction terms,
first principle from physical laws, mechanistic models,

ATOMIC &
MOLECULAR PHYSICS

= oy — =)

g2
Micro: iﬁ%@{r,t] = [%‘F’ +V{r,ﬂ] ¥(r, i) Chaos:

_ d(mv)
o dt

Macro: F ; = sle—2) -

&8 /& &
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Related Works I: Dynamical Origins of
Distribution Functions

J1-D distribution €-> Ordinary Differential Equation

DATA DISTRIBUTION SURVIVAL ANALYSIS DyNAMIC SYSTEM
flx) F(x) Alx) Alx) DYNAMICS % INTERPRETATION
EXPONENTIAL ae ™ 1-e @ a ax % GC
a .—(a+1) _ (X ha a xj(t) PA +
POWER LAW ax; x ( 1-(3}) < aln xio = ac
1-0_,1-0 1-0_,1-0
STRETCHED Ty ) ey ) _ I NON-LINEAR PA
ie 1-8 1-¢ 1-8 G 4 (xl 7 xl r:}] i
EXPONENTIAL P 0 1-0 0 at +GC
1-ax
a . a-1 -(Ax)% —(Ax) a -1 p x; () NON-LINEAR PA
WEIBULL al“x“ e l-e al”x (Ax) yUPT . GC
Aar(Ax)®1 1 Aa(Ax)2-! p xj(t) PA +
Log-roGisTIC [14(Ax)e |2 1 1+(Ax)@ 1+(Ax)% Inf1 + (Ax)"] alt-t;) SINCE THEN GC
X X
SIGMOID (l:‘;x 7 1- ﬁ- — In(1 + e*) ﬁ SINCE THEN GC
LOG-NORMAL * L_e” Unzﬂz O(ln x) i) -In[1 - ®(Inx)] 0 1(z) 4 PA +
) xV2r 1-3(In x) tdz 42 SouARE GC
-y do~1(z) ¢
NORMAL " v’%e z d(x) T_é% - In[1 - ®(x)] dzm 1—5 Souare GC
1 —a 1 b-a b-x;(¢) EL +
UNIFORM y =L y In =% b-(b-a) n ac

Table from Zang etc., KDD2019, Dynamical Origins of Distribution Functions
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https://dl.acm.org/doi/10.1145/3292500.3330842

Data-driven Dynamics for Small Systems

Data-driven discovery of ODEs/ PDEs

oSparse Regression
oResidual Network
oEtc.

JSmall systems!
0<10 nodes & interactions
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IIL. Identified System

oCombinatorial complexity
oNot for complex systems

II. Sparse Regression

to Solve for Active Terms in the Dynamics

T =
:g.:
Z‘:

Image from: Brunton et al. 2016. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. PNAS
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Related Works lI: Structured Sequence Learning

Defined characteristics

oDynamics on graphs are regularly-sampled with same time
intervals, an ordered sequence instead of physical time.

JTemporal Graph Neural Networks
oRNN + CNN

oRNN + GNN
S X[t+1]=LSTM(GCN([t], G))

JLimitations:
oOnly ordered sequence instead of continuous physical time

Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks
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https://arxiv.org/abs/1612.07659
https://arxiv.org/pdf/1901.00596.pdf

Related Works lll: Node (Semi-supervised)
Classification

Defined characteristics
oOne-snapshot features and some nodes’ labels on graphs
oGoal: to infer labels of each node

JGraph Neural Networks

OGCN, Z = f(X,A) = H{'thma}{(ﬁ R{}LU(AX‘HF[”}) I:I-f'“])
OGAT, etC- }T‘: =0 (It i: Z (yi”JW‘-‘f;J)
dLimitations

o1 or 2 layers, over-smoothing when deep

oLacking a continuous-time dynamics view
“+To spread features or labels on graphs
“*Continuous-time: more fine-grained capturing diffusion

Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks
Velickovic et al. 2017. Graph Attention Networks
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Goal: A Unified Framework

dOnce we LEARN a model of dynamics on graphs —— ( ) —

fX(),G,06,t)

dContinuous-time network dynamics prediction:

olnput: G, {X(t1), X(t2), .. X(tp)|0 < t; <+ < tz}, t; < -+ < t; are arbitrary
time moments
oOutput: to predict X(t) at an arbitrary time moment

J(Special case) Structured sequence prediction
olnput: G, {X[1], X[2], ..., X[T]|0 < 1 < --- < T}, an ordered sequence
oOutput: to predlct next k steps X|T + k]

J(Special case) Node (semi-supervised) classification
olnput: G, X = [X, Mask © Y] a snapshot of features and node labels
oOutput: to complete [X, Y]
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Our Idea

Differential Equation Systems

oDifferential Equations are general tools to describe the dynamics
of systems

JGraph Neural Networks
oGraphs are general tools to describe the structures of systems

oGNNs, Temporal GNNs, are the state-of-the-art computational
tools driven by data for linked data

JHow to leverage both Differential Equation systems
and Graph Neural Networks?

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS 18



Neural Dynamics on Complex Networks (NDCN)

Differential Equations + Gr )ph Neural Networks

oDifferential Equation Systems = f(X(t), G,W,t) modeled by a Graph
Neural Network.

o“Deep” and Continuous Depth: X(t) = X(0) +f f(X(7),G,W,t)dt for
states at arbitrary time t € [0, T]

oOr modeling network dynamics in a latent space X;,(t), with encoding and
decoding layers

oILearned as an optimization problem for running dynamics and terminal
0SS

arg min sz ‘}'E(X,G, W, r) dt+S(Y(X{T},E}})
W (2).0(T) 0

subjectto X} (#) zﬁj(X(t),lVg), X(0) =

F
Xp(t) = Xp(0) +/ f(Xh,G, Wh,f)dr
]

X (1) = fa(Xn (1), Wa)

20



A NDCN Instance

JODEs + GNN
dX(t)

oDifferential Equation systems: b

f(X(t),G,W,t) is modeled by a Graph
Neural Network.

oContinuous-depth Deep model: X(t) =
X(0) + fotf(X(r), G, W,t)dt for dynamics
at arbitrary time t

T ~
argmin L= f | X (t) — X (t)| dt
Wik ,bx 0

subject to X3 (t) = tanh (X(lt)VVf3 + be) Wo + bg

dXp(t)
dt
X(t) = Xpn(t)Wq4 + by

b = D—% (D — A)D—% c Rnxn KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS

— ReLU (@Xh(t)W n b) . X1 (0)

——

—

|

t+6

Xh(t + 5) = Xh(t) + f f(Xh: G, W,T) dt



Interpretation from Graph Neural Networks

JGNN, Residual-GNN, ODE-GNN,

gDCN XD X(t) X© X() X, (0 X0
oGNN: X;,1 = f(G, X;, 6;) | xa+v-x ' - '_} _J_ ;t
oResidual-GNN: X,,, = X; + f(G, X;, 6;) m % 4 -
oODE-GNN: X;y5 = X, + 8 * f(G, X, 0,),6 > 0 | @ram e i

o aAX | -T-

"’E — f(G'Xt’ Ht)
oODE-GNN in a latent space: NDCN

1 Our model is an ODE-GNN N

Ocontinuous IayerSItlme XU+ =X+ LX) X(t+6)=X(r)+Tf(X,G,W,r)dr Xh(t+5)=Xh(t)+Tf(x,,,G,W,r)dr
oA real (integer) number of depth > Residual Differential NDCN
time

oLatent space dynamics
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Interpretation from RNN and Temporal GNN

(JRNN, Temporal GNN and our NDCN

oRNN or Temporal GNN
““hy = f(ht—1,%,0;) orhy = f(he_q, G * x¢,0;)
*y; = o(hy, we)

oResidual RNN or Residual Temporal GNN with skip connection
“he = heq + f(heo1,%,0¢) or hy = hyq + f(heq, G % x¢, 6)
*ye = o(hy, W)

oODE-RNN or ODE-GNN

dht = f(h,, x,,80,) or & = f(h, G * x4, 0;)

”J’t = o(he, wye)
JOur model is an ODE-GNN

***Learning continuous-time network dynamics
**Encompassing Temporal GNN by discretization
**Encompassing RNN by not using graph convolution
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Exp1: Learning Continuous-time Network Dynamics

JThe Problem:
olnput: G, {X(t), X(t2), .. X(t)|0 < t; < - < tpht; < -+ <ty are
arbitrary time moments with different time intervals
oOutput: X(t),t is an arbitrary time moment
“*interpolation prediction: t < t; and # {t; < .- < t1}
‘*extrapolation prediction: t > t;

JSetups:
0120 irregularly sampled snapshots of network dynamics
oFirst 100: 80 for train 20 for testing interpolation
olLast 20: testing for extrapolation
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Canonical Network Dynamics

in Phxsics and Biologx

JReal-world Dynamics on Graph (adjacency matrix A)

oHeat diffusion: ’;‘Et) —k; Ay (o () — 5x@®)
oMutualistic interaction: dx(0) = bl + x;(t) (1 — x‘(t)) (xi(t) - 1) +
n ORI0 “ AN

J=14705 g +elxl(t)+h]£}_(Q
oGene regulatory: ‘(t) = —b;x;(t)) + Yi=14

J Graphs
oGrid, Random, power-law, small-world, community, etc.

Visualizing dynamics on graph
oNodes are numbered by community labels

oMapped into a N2 grid
oX()™1: N2 > R % i \ > S
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Exp1: Learning Continuous-time Network Dynamics

X(®) X() Xp(8)

- n - dXx(t) dX,(t)
_1Baselines: lablatlon models | S a8
oODE-GNN without encoding/decoding layers o P EEE
oNeural ODE Network I —
F"_""""ji_‘.
“*No graph diffusion | s .
oNDCN without control parameter W = - _
**Determined dynamiCS X(t+6)=X(t)+75f(X,G.W.r)dr Xh(t+5)=xh(r)+Tf(xh,c,w,r)dr
. Differential NDCN
argmin L= fo X () — X (t)| dt

subject to X} (t) = tanh (X(t)We + be) Wo + bo

dX ) (1)
dt
X(t) = Xn(t)Wg + bg

— ReLU ((IJXh(t)W n b) . X1 (0)

Chen et al. 2019. Neural Ordinary Differential Equations. NeurlPS.
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Exp1: Heat Diffusion on Different Graphs

Ground Truth

NDCN
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Exp1: Mutualistic Dynamics on Different Graphs

Ground Truth

NDCN
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Exp1: Gene Dynamics on Different Graphs

Ground Truth

NDCN
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Exp1: Results for Continuous-time Extrapolation

_1Mean Absolute Percentage Error
120 runs for 3 dynamics on 5 graphs

J1Our model achieves lowest error

Table 1: Continuous-time Extrapolation Prediction. Our NDCN predicts different continuous-time network dynamics ac-
curately. Each result is the normalized /; error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community
No-Encode 29.9 7.3 27.8 &£ 5.1 24.9 £ 5.2 24.8 & 3.2 30.2 £ 4.4
Heat No-Graph 30.5 1.7 58+ 1.3 6.84+ 0.5 10.7 £ 0.6 24.34+ 3.0
Diffusion No-Control 73.4 1 14.4 28.2 £ 4.0 25.2 + 4.3 30.8 £4.7 37.1 £ 3.7
[NDCN 4.1 +£1.2 4.3+ 1.6 4.9 £0.5 2.5+ 0.4 4.8+1.0 |
No-Encode  45.3 & 3.7 9129 200 £ 88 545 £ 3.6 [45E50
Mutualistic No-Graph 56.4 £ 1.1 6.7 £ 2.8 14.8 £ 6.3 54.5 = 1.0 9.5+ 1.5
Interaction No-Control 140.7 £ 13.0 10.8 &£ 4.3 106.2 £ 42.6 115.8 £ 12.9 16.9 £ 3.1
(NDCN 26.7T 4.7 3.8+ 1.8 T4+ 26 14.4 + 3.3 36+1.5
No-Encode  3T.7 £ 14.1 175X 13.0 33.7x99 255£7.0 26.3 £ 10.
Gene No-Graph 13.3 £ 0.9 12.2 £ 0.2 43.7 £ 0.3 15.4 £ 0.3 19.6 & 0.5
Regulation No-Control 65.2 4 14.2 68.2 4+ 6.6 70.3 7.7 58.6 £ 17.4 64.2 4+ 7.0
[NDCN 16.0 & 7.2 1.8+ 0.5 3.6 £0.9 4.3+0.9 2.5+ 0.6 |
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Exp1: Results for Continuous-time Interpolation

dinterpolation is easier than extrapolation

J1O0Our model achieves lowest error

Table 2: Continuous-time Interpolation Prediction. Our NDCN predicts different continuous-time network dynamics accu-
rately. Each result is the normalized /; error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5
networks by each method.

Grid Random Power Law Small World Community
No-Encode 32.0 £ 12.7 26.7 - 4.4 25.7T + 3.8 27.9+ 7.3 35.0+ 6.3
Heat No-Graph 41.9 = 1.8 9.4+0.6 18.2+£ 1.5 25.0x 2.1 250+ 1.4
Diffusion No-Control 56.8 & 2.8 32.2 £ 7.0 33.5 4+ 5.7 40.4 £ 3.4 39.1 £ 4.5
NDCN 3.210.6 3.21+04 5.6 & 0.6 3.41+04 4.3+ 0.5
No-Encode 28.9 + 2.0 19.9 £ 6.5 34.5 £ 13.4 27.6 £ 2.6 25.5 £ 8.7
Mutualistic No-Graph 28.7+ 4.5 7.8+24 23.24+ 4.2 26.9 + 3.8 14.1 £ 2.4
Interaction No-Control 7224+ 41 225+ 102 G384+ 39 679+ 29 3394123
NDCN 7.6 +1.1 6.6 +24 6.5+ 1.3 4.74+ 0.7 7.9+ 2.9
No-Encode 39.2 + 13.0 14.5 + 12.4 33.6 + 10.1 27.7+ 9.4 21.2 +10.4
Gene No-Graph 25.2 £ 2.3 11.9 £ 0.2 394+ 1.3 15.7 £ 0.7 18.9 £ 0.3
Regulation No-Control 66.9 4+ 8 8 31.7+52 AD 3+ 6.6 4904+ R0 355+ 53
NDCN 581 1.0 1.5+0.6 29105 4.2+ 0.9 23106
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Exp2: Structured Sequence Prediction

1The Problem (Structured sequence prediction):
olnput: G, {X[1],X[2], ..., X[T]|0 <1 < -- < T}, 1,..T are regularly-
sampled with the same time intervals
“*with an emphasis on an ordered sequence rather than time

oOutput: X[T + M], next M steps
“*extrapolation prediction

JSetups:
0100 regularly sampled snapshots of network dynamics
oFirst 80 for training, last 20 for testing

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS 35



Exp2: Structured Sequence Prediction

Baselines: temporal-GNN models
oLSTM-GNN
“X[t+1]=LSTM(GCN([t], G))
oGRU-GNN
“X[t+1]=GRU(GCN([t], G))
oRNN-GNN
“X[t+1]=RNN(GCN([t], G))

Seo et al. 2016. Structured Sequence Modeling with Graph Convolutional Recurrent Networks.

Wu et al. 2019. A Comprehensive Survey on Graph Neural Networks
KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS
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Exp2: Structured Sequence Prediction

IResults:
oOur model achieves lowest error with much fewer parameters

JThe learnable parameters:
oLSTM-GNN: 84,890, GRU-GNN: 64,770, RNN-GNN: 24,530
oNDCN: 901

Table 3: Regularly-sampled Extrapolation Prediction. Our NDCN predicts different structured sequences accurately. Each
result is the normalized ¢, error with standard deviation (in percentage %) from 20 runs for 3 dynamics on 5 networks by each
method.

Grid Random Power Law Small World Community
LSTM-GNN 12.8 + 2.1 216 £ 7.7 12.4 £ 5.1 11.6 &+ 2.2 13.5 1+ 4.2
Heat GRU-GNN 11.2 £ 2.2 9.1 +2.3 8.8+1.3 9.3+ 1.7 7.910.8
Diffusion RNN.GNN 18 8L 549 25 0L 58 189 1+ 6.5 2181138 16100
NDCN 4.3+ 0.7 4.7+ 1.7 54104 2.7T1+04 5.3+ 0.7
CSTM-GNN Bl.4 T 3.3 24.2 T 24.2 270X 7.1 P8.2 T 2.4 25.0 £ 22.93
Mutualistic GRU-GNN 49.8 + 4.1 1.0+ 3.6 12.2 £ 0.8 51.1 + 4.7 3.7T+4.0
Interaction NN-GNN 56.6 + 0.1 244113 120+04 574419 R2+ 64
I_IETDCN 208+ 1.6 4.7+1.1 11.2+ 5.0 159+ 2.2 3.8+ 0.9
LSTM-GNN 27.7 £ 3.2 67.3 = 14.2 38.8 £ 12.7 13.1 x£ 2.0 53.1 = 16.4
Gene GRU-GNN 24.2 1+ 2.8 50.9 6.4 35.1 £15.1 11.1 + 1.8 46.2 + 7.6
Regulation NALGNN 28 0L G 8 565+ 57 42 0+ 128 140573 4654+ 35
NDCN 18.6 = 9.9 2.41+0.9 4.1+1.4 55+ 0.8 29105




Exp3. Node Semi-supervised Classification

JProblem: One-snapshot case
olnput: G, X, a part of labels Y (X)
oOutput: To Complete Y (X)

Datasets:

O

Table 11: Statistics for three real-world citation network

datasets. N, E, D, C represent number of nodes, edges, fea-
tures, classes respectively.

Dataset

N E D

Train/Valid/Test

Cora
Citeseer
Pubmed

2 708 5,429 1,433
3,327 4,732 3,703
19,717 44,338 500

140/500/1, 000
120/500/1, 000
60/500/1, 000
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Exp3. Node Semi-supervised Classification

JBaselines
oGraph Convolution Network (GCN) 2= f(X.4) = softmax(A ReLU (AX W) (V)
oAttention-based GNN (AGNN) |
oGraph Attention Networks (GAT) Fi=o (;Z ) wigwkaj)

k=1 jeN:

Kipf et al. 2016. Semi-Supervised Classification with Graph Convolutional Networks
Velickovic et al. 2017. Graph Attention Networks

KDD 2020 -NEURAL DYNAMICS ON COMPLEX NETWORKS 39


https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903

Exp3. Node Semi-supervised Classification

diInterpretation of our model
olnput: G, [X, Mask@Y], features and some node labels
oOutput: To complete Y

oModel: A graph dynamics to spread features and labels on graph
over continuous time T

WXV — f(G, X, Y, W, t)

\/
0’0

T T C
argmin L= / R(t) dt — Z Z Y 1 (T)log Yi 1 (T)
0

We,be ,Wg,bgq 1i=1 k=1
subject to Xr(0) = tanh (}'«f((])VI/'e + be)

dXp (t)
dt
Y (T) = softmax (X (T)Waq + bg)

— ReLU (@)Xh(t))
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Exp3. Node Semi-supervised Classification

Table 4: Test mean accuracy with standard deviation 1n per-

JIMetrics centage (%) over 100 runs. Our NDCN model gives very
competitive results compared with many GNN models.
oAccuracy over 100 runs

Model Cora Citeseer Pubmed
GCN 81.5 70.3 79.0
D Resu Its AGNN 83.1+0.1 71.740.1 79.9+0.1
OVery Competmve resu|ts GAT 83.0+0.7 7254+0.7 79.0+0.3
I NDCN 83.3+06 73.1+06 798-+0.4 ]

oContinuous-time
dynamics on graphs

oBest results at time T=1.2
“»Continuous depth/time

J
) =Plbmed
0.80

(b}
0.7

0.6
> >
o 0.5 U7
o o 0.70
§ 0.4
2 0.65
0.3

0.2 Q.60

0.1 0.55

X:] 1.0 1 . . 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2
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Figure 5: Our NDCN model captures continuous-time dynam-
ics. Mean classification accuracy of 100 runs over terminal
time when given a specific «. Insets are the accuracy over the
two-dimensional space of terminal time and «
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Summary

JA novel NDCN model, which is a
oContinuous-depth GNN
oContinuous-time (temporal) GNN
oGraph Neural ODE

JOur NDCN, a unified framework to solve
oContinuous-time network dynamics prediction:
oStructured sequence prediction
oNode (semi-supervised) regression/classification at one-snapshot
good performance with less parameters.

JODE-GNN model

oA potential data-driven method to model structure and dynamics of
complex systems in a unified framework
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Thank You!
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