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Healthcare and Graph

Many healthcare problems can be modeled as graph problems.

Drug retargeting

First-Level ATC Classification
@® Metabolism
®Blood
@ Cardiovascular
@ Dermatological
@ Genitourinary
Endocrine
® Antiinfective
® Antineoplastic
®Musculo-skeletal
@®Nervous system
@®Respiratory
@ Sensory organs
Various
@®Unknown
Target

Node Size
95
) 47
28
20 |
) 11

® o ee 00 ne 0o cnne e 1

. .

'. . [} . 'Y L . « °
PR
..-.... “e “e T ® . e

sbbisesssesi ass At L R R R T R R R R R R R

http://www.cytoscape.org/

Adverse drug reaction

Bile acid

__SLC10A1

ATP8B1

EDNRB Bosentan

AU o—

UNHA
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: 3
KCNJ11 5
L& o 13| |e
[= 2 =]
~ 25 m%ﬁggﬁ
R
* ABCB11 1321 aa (Homo sapiens) SESEEILRIE &
Predicted functional partners: 111 [
— Troglitazone 441.5 g/mol el 0.994
= Ursodeoxycholi 392.6 g/moal e 0.990
Bosentan 551.6 g/mol . 0.986
& Glibenclamide 484.0 g/mol el 0.982
~ Bile acid 408.6 g/mol oo 0.977
@ NR1H4 472 aa . )| 0974
— Taurocholate 537.7 g/mal . . 0.973
@ ATP8B1 1251 aa 0.971
& Tautochenodeox  499.7 g/mol . 0.967
== Guggulsterone 312.4 g/mol 0 0.961

https://www.future-science.com/doi/10.4155/fmc.13.202
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Networks are not /earning-friendly

Pipeline for network analysis

G=(V,E)
Network
Inapplicability of bata
ML methods = lt
ealture
ﬁ ExtractiQs

Network
Applications




Learning from networks

Network

Embedding
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Network Embedding

G=(V,E) G=(V)

Vector Space
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Easy to parallel

Can apply classical ML methods



The goal of network embedding

[ Goal Support network inference in vector space ]
Reflect network Maintain network
structure properties

gl Transitivity
Transform network nodes into vectors that are fit for

off-the-shelf machine learning models.
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Graph Neural Networks

Design a learning mechanism on graph.

[0 Basic idea: recursive definition of states
si= Y F(si,sj,F,}/,F}/,FEj)
JEN(4)
0 A simple example: PageRank
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F. Scarselli, et al. The graph néUraI network mgael. IEEE TNN, 20089.
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Graph Convolutional Networks (GCN)

o Main idea: pass messages between pairs of nodes & agglomerate
H* =, (ﬁ—%Aﬁ—%Hl@l)
00 Stacking multiple layers like standard CNNSs:

0 State-of-the-art results on node classification

Hidden layer Hidden layer
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T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.



Network Embedding and GCN

Graph

Feature

Model Output
Feature
- N (1 |
v
R Networ_k I o i I A
Embedding

. J e Y,
Topology to Vector Embedding

4 )
> GCN —>[ Task results ]

\_ J

Fusion of Topology and Features

Unsupervised v.s. (Semi-)Supervised




Learning from networks

Network GCN

Embedding




The intrinsic problems NE is solving

Reducing representation dimensionality while preserving necessary
topological structures and properties.

Nodes & Links Non-transitivity
Node Neighborhood Asymmetric Transitivity
Pair-wise Proximity generate Uncertainty

embed ,} %,
Community L Dynamic
Hyper Edges Heterogeneity

Global Structure Interpretability
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Preserving Arbitrary-Order Proximity

Shifting across different orders/weights:

Embeddingl
Shifting
/ Embedding2
Eigen-decomposition A ¥ /
< Embedding3
Embedding4
Efficient!

Preserving arbitrary-order proximity
Low marginal cost
Accurate and efficient

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.
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Preserving Arbitrary-Order Proximity

High-order proximity: a polynomial function of the adjacency matrix
S =f(A) =wi A + wy A% + - + w, Al
q: order; wy...w,: weights, assuming to be non-negative
A: could be replaced by other variations (such as the Laplacian matrix)

Objective function: matrix factorization

. T
min||S — U*V*
U*v*

U*, V* € RV*4: |eft/right embedding vectors

|2
F

d: dimensionality of the space

Optimal solution: Singular Value Decomposition (SVD)
U, %, V]: top-d SVD results
U*=UVxy, V*=VVz

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.
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Preserving Arbitrary-Order Proximity

Eigen-decomposition reweighting

THEOREM 4.2 (EIGEN-DECOMPOSITION REWEIGHTING). If[A, x]
is an eigen-pair of A, then |¥ (A), x| is an eigen-pair of S = F(A).

Efficient!
Eigen-decomposition
A > |A || X
Polynomial F(-) Efficient! lPolynomial F()

S Eigen-decomposition [F(A)| | ¥

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.
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Experimental Results

Link Prediction

BlogCatalog Flickr

== AROPE 1.001
AROPE-F
e DeepWalk
m—pp LINE1
=== LINE2 0.75-
Node2Vec
w—p=— SDNE

Precision
b
(4]

o
Precision
o
(4,1
o

0.251

0.00 —~ 0.00+

1e+02 1e+03 1e+04 1e+05 1e+06 1e+02 1e+03 1e+04 1e+05 1e+06
Number of Predicted Links Number of Predicted Links
Youtube Wiki

0.8- —8— AROPE
AROPE-F
=—de— DeepWalk
—t— LINE1
06 —&— LINE2

== NEU

Precision
(=]
B

0.24

0.0
1e+02 1e+03 1e+04 1e+05 1e+06 1e+02 1e+03 1e+04 1e+05 1e+06
Number of Predicted Links Number of Predicted Links

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.




Hyper-network embedding
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Networks Hyper-Networks

A hyper-network is a network in which an edge can include any number
of nodes



Hyper-edges are often indecomposable

reaction

p ———

// \\
// \\

/ \
/ \
/ paper venue \
| \
\ /’
\ /
\ @uthor 1 Author 3//
\\\ Author 2 ///

Adverse Drug Network Bibliographic Network

Ke Tu, et al. Structural Deep Embedding for Hyper-Networks. AAAI, 2018.



Structural Deep Network for Hyper-network

_____________________________________________________________________________________

.1 Node Type a Node Type b Node Type ¢ |
b ! B
w45 | (00 00 00 00 00 00
second-order preservin
First Layer | @ autoencoder |: autoencoder | autoencoder > g °
wxrxi | (©-00) | (©-00) | |©-00
L ¥ ¥ 7
Second Layer Non-linear mapping
N )
Liji { i
Third Layer @ : .tuple—wise. RN first order preserving
| similarity function
Sl]k { @@ |
Supervised Binary Component )

Ke Tu, et al. Structural Deep Embedding for Hyper-Networks. AAAI, 2018.



Experiment: link prediction

Table 4: AUC value for link prediction 9 cecpuniimeon) A & Ingummy b SHEmeny o HEnE
¥ ¥ deepwalk{min} #=k node2vecimean) ¢ & SHE(min)
| methods | _GPS | Movielens | drug_ | wordnet | 09] —e——— . e |
| DHNE | 09166 | 08676 | 0.9254 | 0.8268 | 1 ~14%
deepwalk | 0.6593 0.7151 0.5822 | 0.5952 08} , ————— : 1
mean line 0.7795 0.7170 0.7057 | 0.6819 I
node2vec | 0.5835 0.8211 0.6573 | 0.8003 ®)
SHE | 0.8687 | 0.7459 | 0.5899 | 0.5426 2 %7
deepwalk | 0.5715 0.6307 0.5493 | 0.5542
min line 0.7219 0.6265 0.7651 | 0.6225 06f
node2vec | 0.5869 0.7675 0.6546 | 0.7985 Ly 5 P
SHE 0.8078 0.8012 0.6508 | 0.5507 05l M i A
tensor 0.8646 0.7201 0.6470 0.65 ]_6 0% 53 “ G 55 20
HEBE 0.8355 0.7740 0.8191 | 0.6364 Percentage
The overall performance Performance on networks of

different sparsity

Ke Tu, et al. Structural Deep Embedding for Hyper-Networks. AAAI, 2018.
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Embedding
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The intrinsic problem GCN is solving

Fusing topology and features in the way of smoothing features with
the assistance of topology.

Hl-l—l _ p ZAD Hl@l




Robust GCN

OAdversarial attacks
Osmall perturbations in graph structures and node attributes

Ogreat challenges for applying GCNs to node classification

Results for attacking Citeseer data
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Robust GCN

P B ) S — gampfe £

f | | * - Mt

L Tas D‘j.'.ipem_fm
| | : Function

X |
Feature / _ '
matrix (b4 A& 4
I N 1 [j L
eoeo|| 2 | | cect = I~
oo 00@ = o0
eooo|\\ - {p--4-
: Vafiance-based Variance-based 000
(I N ¥ Atfention Attention 00
o000 000
Gaussian Based hidden representations: Attention mechanism: Sampling process:
Variance terms absorb the Remedy the propagation Explicitly considers mathematical
effects of adversarial attacks of adversarial attacks relevance between means and

variances
Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.
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Robust GCN

0 Node Classification on Clean Datasets

Cora | Citeseer | Pubmed
GCN 81.5 70.9 79.0
GAT 83.0 72.5 79.0
RGCN | 83.1 71.3 79.2

O Against Non-targeted Adversarial Attacks

Cora Dataset Citeseer Dataset i Pubmed Dataset

Accuracy

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
Ratio of Noise Edges Ratio of Noise Edges Ratio of Noise Edges

Figure 2: Results of different methods when adopting Random Attack as the attack method.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



Disentangled GCN

A real-world graph is typically formed due to many latent factors.

O Existing GNNs/GCNSs:

O A holistic approach, that takes in
the whole neighborhood to produce
a single node representation.

L

O We suggest:
O To disentangle the latent factors.

(By segmenting the heterogeneous parts, and learning
multiple factor-specific representations for a node.)

O Robustness (e.g., not overreact to an irrelevant
factor) & INterpretabllity.
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Disentangled GCN

- We present DisenGCN, the disentangled graph convolutional network.
- DisenCony, a disentangled multichannel convolutional layer (figure below).
- Each channel convolutes features related with a single latent factor.

Feed back to improve neighborhood routing.

e ¥ —

.‘-—'————-——- ______

gy v | m— w— o—

{

""--__._____. ______

channel 3
T

Layer Input

Layer @
Extract features specific to each factor. Output

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.
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Disentangled GCN

09

0.8

0.7

06

10.5

104

103

102

10.1

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Some interesting questions for GCN...



What if the problem is topology-driven?

O Since GCN is filtering features, it is inevitably feature-driven
O Structure only provides auxiliary information (e.g. for filtering/smoothing)

O When feature plays the key role, GNN performs good ...
O How about the contrary?
O Synthesis data: stochastic block model + random features

Method Results
Random 10.0
GCN 18.3x1.1
DeepWalk | 99.0x0.1




Does GCN fuse feature and topology optimally?

B Fusion Capability of GCNs

> ldeal Solution: extract the most correlated information for task

Case 1 Case 2

L

Random topology  Correlated Features Correlated Topology Random Features

MLP(100%) > GCN(75.2%) DeepWalk(100%) > GCN(87%)
Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-channel Graph Convolutional Networks.
ACM SIGKDD, 2020.



32

Rethinking: Is GCN truly a Deep Learning method?

O Recall GNN formulation:
H*+D = g(SHROW®), § = p~1/2p~1/2
O How about removing the non-linear component:
H&+1) — cgEys (k)
O Stacking multiple layers and add softmax classification:
¥ = softmax(H)

= Softmax:SS LSHOW @@ |y K-1)

= softmax Ow)
High-order proximity
Wu, Felix, et al. Simplifying graph convolutional networks. ICML, 20109.



Rethinking: Is GCN truly a Deep Learning method?

O This simplified GNN (SGC) shows remarkable results:

Node classification Text Classification

Cora Citeseer Pubmed Dataset \ Model \ Test Acc. T Time (seconds) |
SONG GCN | 87.94+02 12051+ 144.5
GCN 81.4+0.4 70.9 £ 0.5 79.0+0.4 SGC | 88.5+0.1 19.06 + 0.15
GAT 83.3 £+ 0.7 72.6 £ 0.6 78.5+0.3 RS GCN | 97.04+0.2 129.6 £ 9.9
FastGCN 79.8+0.3 68.8 +£ 0.6 77.44+0.3 SGC | 97.2£0.1 1.90 £0.03
GIN 77.6+1.1 | 66.1+£09 | 77.0+£1.2 R5H GCN | 938402 2450+ 13.0
LNet 80.2+3.01 | 67.3+0.5 | 78.3+ 0.6 S6C | 940£02 3.01+0.01
AdaLNet | 81.94 197 | 70.6 £ 0.8" | 77.8 £ 0.7 Ohsumed | oot | Oe2h0-1 2024 E
DGI 82.5+ 0.7 71.6 £0.7 78.4+0.7 GoN | 763103 T ioa
SGC 81.0+ 0.0 71.9+0.1 78.9+ 0.0 MR SGC | 750403 1.00 & 0.04

Wu, Felix, et al. Simplifying graph convolutional networks. ICML, 20109.



Network Embedding v.s. GCN

There is no better one, but there is more proper one.

Network GCN Feature-based
Embedding Learning

Node

Topology Features



Summaries and Conclusions

O Unsupervised v.s. (Semi-)Supervised

O Topology-driven v.s. Feature-driven

O For different healthcare tasks, there is no best one, but there is more
proper one.

Network Feature-based
Embedding Learning

Node
' Features



A Survey on Network Embedding

IEEE TRANSACTIONS ON

KNOWLEDGE AND
DATA ENGINEERING

A Survey on Network Embedding

Issue No. 01 - (preprint vol. )
ISSN: 1041-4347
pp:1
DOl Bookmark: http://doiiseecomputersociety.org/10.1109/TKDE.2018.2849727
Peng Cui, Computer Science Department, Tsinghua University, Beijing, Beijing China (e-mail: cuip@tsinghua.edu.cn)
¥iao Wang , Computer Science, Tsinghua University, Beijing, Beijing China (e-mail: wangxiao00T@mail.tsinghua.edu.cn)
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ABSTRACT

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a
sighificant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then
reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of
network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily,
we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structure- and property-
preserving network embedding methods, the network embedding methods with side information and the advanced information preserving network
embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data
sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system

and point out some potential future directions.

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network Embedding. IEEE TKDE,
2019.



Deep Learning on Graphs: A Survey

Deep Learning on Graphs: A Survey
Ziwei Zhang, Peng Cui and Wenwu Zhu

Abstract—Deep learning has been shown successful in a number of domains, ranging from acoustics, images to natural language
processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs.
Recently, a significant amount of research efforts have been devoted to this area, greatly advancing graph analyzing techniques. In this
survey, we comprehensively review different kinds of deep learning methods applied to graphs. We divide existing methods into three
main categories: semi-supervised methods including Graph Neural Networks and Graph Convolutional Networks, unsupervised
methods including Graph Autoencoders, and recent advancements including Graph Recurrent Neural Networks and Graph
Reinforcement Learning. We then provide a comprehensive overview of these methods in a systematic manner following their history
of developments. We also analyze the differences of these methods and how to composite different architectures. Finally, we briefly

oo outline their applications and discuss potential future directions.
|
(- Index Terms—Graph Data, Deep Learning, Graph Neural Network, Graph Convolutional Network, Graph Autoencoder.
N +
Q
a
— 1 INTRODUCTION o Scalability and parallelization. In the big-data era, real
— . ] ] graphs can easily have millions of nodes and edges, such
In _the_ la{;t degade, deep leam¥ng has l?een a crown Jewel m as social networks or e-commerce networks [8]. As a result,
— artificial intelligence and machine learning [1], showing superior how to design scalable models, preferably with a linear time
O performance in acoustics [2], images [3] and natural language complexity, becomes a key problem. In addition, since nodes
__'] processing [4]. The expressive power of deep learning tf’ extract and edges in the graph are interconnected and often need to
o complex patterns underlying data has been well recognized. On be modeled as a whole, how to conduct parallel computing is
O the other hand, graphs' are ubiquitous in the real world, repre- another critical issue.

1 LIS B v

Ziwei Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs: A Survey. Arxiv, 2019.
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