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8study designs. The profiles of treatment pathways are based on
more than 250 million patient records, although some overlap is
possible because of payers and health care providers reporting on
the same patients. OHDSI successfully addressed patient privacy
and diverse research regulatory constraints, adopted a consistent
data model, and distributed queries across a broad population.
Furthermore, although this study happened to be of treatment
pathways for three diseases, all the involved data sources have
adopted a common industry standard for longitudinally recorded
visits, diagnoses, procedures, medications, and (where available)
laboratory tests, and any combination of the data can be used to
answer future questions across medicine. A query authored at one
OHDSI site may be run at all sites without further modification.
Despite the wide variety of data sources, significant consistency

is shown in Fig. 5, with largely similar rates and similar upswing.
The world is moving toward more consistent therapy over time
across diseases and across locations. Nevertheless, outliers are also
seen, highlighting the danger of drawing broad inferences from
single-site or even single-country observational studies. This study
corroborates previous work by the OHDSI researchers, which il-
lustrated the danger of naively combining data from disparate
sources (24). The differences in treatment pathways over time,
between countries, between practice types, and across sites—such
as the apparent lag in the adoption of metformin for treatment of
diabetes mellitus in some sites—points to potential challenges for
generalizing randomized trial results. For example, differences in
treatment practices between studied and nonstudied groups could
threaten the ability to generalize the efficacy of even non-
medication interventions such as education to nonstudied groups.
Comparing diseases, we see consistent differences, perhaps re-

lated to the availability, appropriateness, or acceptance of concrete
recommendations. Diabetes shows greater adoption of a single
medication, especially in recent years. Depression, which has far less
concrete guidelines, has a roughly similar rate of single-medication

use, but no one medication stands out as predominant. Additions
and changes of medications are more likely to be within the same
medication class for depression than for the other diseases. These
differences among diseases are not solely the result of formal rec-
ommendations, however. Metformin, which was approved in the
United States relatively recently (1995), already dominated the
market as a first-line therapy in 2000 (Fig. 4C).
The proportion of patients with a sequence of medication use

that is unique across all data sources—almost one quarter the pa-
tients with hypertension—is striking. It may point to a failure of the
field to converge on an effective treatment. The variation in first
medications (Fig. 3 D–F) corroborates this fact. When precision
medicine becomes a reality, with fine-grained, reliable knowledge
of patient characteristics, it may be possible to assign a unique
sequence tailored to a patient. For the time being, however, much
of this variation probably reflects ineffective differences in practice
and a trial-and-error approach to diseases that are difficult to treat.
These results have general and specific implications for ran-

domized clinical trials. The heterogeneity implies that randomized
trials may not be broadly generalizable if not designed properly.
Multicenter trials should not be a convenient sample of academic
medical centers but a purposeful selection of environments that
represent the diversity of practice in health care. During analysis,
trial results cannot simply be aggregated but may need to be
stratified by practice characteristics. More specifically, trials in di-
abetes, hypertension, and depression can use our uncovered path-
ways and their prevalences for future trial design. For example,
hypotheses and control groups for trials in these diseases should
consider actual rather than assumed practice. For example, if a
medication of interest is always given in sequence after another
one, then a randomized trial of the causal effect of new-onset use of
that medication will not be relevant to current practice.
There has been related work on empirical treatment pathways.

One project generated algorithms for mining time dependencies,
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Fig. 3. For each disease, diabetes (A–C), hypertension (D–F), and depression (G–I), the inner circle shows the first relevant medication that the patient took, the
second circle shows the second medication, and so forth. Three data sources are shown for each disease; the data source abbreviations are defined in Table 2.
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Federated Learning

Federated Learning for Healthcare Informatics 3

grams captured by smartwatch [71]), the sensitive patient data can stay either 67

in local institutions or with individual consumers without going out during 68

the federated model learning process, which effectively protects the patient 69

privacy. The goal of this paper is to review the setup of federated learning, 70

discuss the general solutions and challenges, as well as envision its applications 71

in healthcare. 72

In this review, after a formal overview of federated learning, we summarize 73

the main challenges and recent progress in this field. Then we illustrate the 74

potential of federated learning methods in healthcare by describing the suc- 75

cessful recent research. At last, we discuss the main opportunities and open 76

questions for future applications in healthcare. 77
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Fig. 1: Schematic of the federated learning framework. The model is
trained in a distributed manner: The institutions periodically communicate
the local updates with a central server to learn a global model. The central
server aggregates the updates and sends back the parameters of the updated
global model.

Difference with Existing Reviews There has been a few review arti- 78

cles on federated learning recently. For example, Yang et al. [97] wrote the 79

early federated learning survey summarizing the general privacy-preserving 80

techniques that can be applied to federated learning. Some researchers sur- 81

veyed sub-problems of federated learning, e.g., personalization techniques [51], 82

semi-supervised learning algorithms [41], threat models [60], mobile edge net- 83

works [58]. Kairouz et al. [43] discussed recent advances and presented an 84

extensive collection of open problems and challenges. Li et al. [55] conducted 85

the review on federated learning from a system viewpoint. Different from those 86

reviews, this paper provided the potential of federated learning to be applied 87

in healthcare. We summarized the general solution to the challenges in feder- 88

ated learning scenario and surveyed a set of representative federated learning 89
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10
classification as output. The image-to-classification approach
in one classifier replaces the multiple steps of previous image
analysis methods.
One method of addressing a lack of data in a given domain is

to leverage data from a similar domain, a technique known as
transfer learning. Transfer learning has proven to be a highly
effective technique, particularly when faced with domains with
limited data (Donahue et al., 2013; Razavian et al., 2014; Yosinski
et al., 2014). Rather than training a completely blank network, by
using a feed-forward approach to fix the weights in the lower
levels already optimized to recognize the structures found in
images in general and retraining the weights of the upper levels
with back propagation, the model can recognize the distinguish-
ing features of a specific category of images, such as images
of the eye, much faster and with significantly fewer training ex-
amples and less computational power (Figure 1).
In this study, we sought to develop an effective transfer

learning algorithm to process medical images to provide an ac-
curate and timely diagnosis of key pathology in each image. The
primary illustration of this technique involved optical coherence

Figure 1. Schematic of a Convolutional Neu-
ral Network
Schematic depicting how a convolutional neural

network trained on the ImageNet dataset of 1,000

categories can be adapted to significantly increase

the accuracy and shorten the training duration of a

network trained on a novel dataset of OCT images.

The locally connected (convolutional) layers are

frozen and transferred into a new network, while

the final, fully connected layers are recreated and

retrained from random initialization on top of the

transferred layers.

tomography (OCT) images of the retina,
but the algorithm was also tested in a
cohort of pediatric chest radiographs to
validate the generalizability of this tech-
nique across multiple imaging modalities.

RESULTS

The primary application of our transfer
learning algorithm was in the diagnosis
of retinal OCT images. Spectral-domain
OCT uses light to capture high-resolution
in vivo optical cross sections of the retina
that can be assembled into three-dimen-
sional-volume images of living retinal
tissue. It has become one of the most
commonly performed medical imaging
procedures, with approximately 30million
OCT scans performed each year world-
wide (Swanson and Fujimoto, 2017).
OCT imaging is now a standard of care
for guiding the diagnosis and treatment
of some of the leading causes of
blindness worldwide: age-related macu-

lar degeneration (AMD) and diabetic macular edema. Almost
10 million individuals suffer from AMD in the United States, and
each year, more than 200,000 people develop choroidal neovas-
cularization, a severe blinding form of advanced AMD (Ferrara,
2010; Friedman et al., 2004; Wong et al., 2014). In addition,
nearly 750,000 individuals aged 40 or older suffer from diabetic
macular edema (Varma et al., 2014), a vision-threatening form
of diabetic retinopathy that involves the accumulation of fluid
in the central retina. The prevalence of these diseases will likely
increase even further over time due to the aging population and
the global diabetes epidemic. Fortunately, the advent and wide-
spread utilization of anti-vascular endothelial growth factor (anti-
VEGF)medications has revolutionized the treatment of exudative
retinal diseases (Kaiser et al., 2007; Ferrara, 2010), allowing
patients to retain useful vision and quality of life. OCT is critical
to guiding the administration of anti-VEGF therapy by providing
a clear cross-sectional representation of the retinal pathology
in these conditions (Figure 2A), allowing visualization of individ-
ual retinal layers, which is impossible with clinical examination
by the human eye or by color fundus photography.

Cell 172, 1122–1131, February 22, 2018 1123

Kermany, Daniel S., Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L. Baxter, Alex McKeown et al. 
"Identifying medical diagnoses and treatable diseases by image-based deep learning." Cell 172, no. 5 (2018): 1122-1131.
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is comparable to the performance of well-trained dermatologists.
Similar strategies have also achieved good performance in other
medical problems with di�erent types of medical images [15, 19]. In
addition to computer vision, powerful natural language processing
models such as transformer [35] and BERT [9] with parameters
trained on general natural language data, have also been �ne-tuned
to analyze unstructured medical data [24]. Because these models
are pre-trained on general data, they can only encode some general
knowledge, which is not speci�c to medical problems. Moreover,
such models are only available with certain complicated architec-
tures with a huge amount of general training data. It is di�cult
to judge how and why such mechanism will be e�ective in which
clinical scenarios.

In this paper, we propose MetaPred, a meta-learning framework
for low-resource predictive modeling with patient EHRs. Meta-
learning [36] is a recent trend in machine learning aiming at learn-
ing to learn. By low-resource we mean we only have limited patient
EHRs for the target clinical risk, which is not enough to train a
good predictor by themselves. For this scenario, we develop a model
agnostic gradient descent framework to train a meta-learner on a
set of prediction tasks where the target clinical risks are highly rele-
vant. For these tasks, we choose one of them as the simulated target
task and the rest as source tasks. The parameters of the predictive
model will be updated through a step-by-step sequential optimiza-
tion process. In each step, an episode of data will be sampled from
the source and simulated target tasks to support the updating on
model parameters. To compensate the optimization-level transfer-
able parameter learning, a novel objective-level domain adaptation
is taken into account. We validate the e�ectiveness of MetaPred on
a large-scale real-world patient EHR corpus with a set of cognition
related disorders as the clinical risks to be predicted, and Convo-
lutional Neural Networks (CNN) and Long-Short Term Memory
(LSTM) are adopted as the predictors because of their popularity in
EHR based analysis. We also demonstrate that if we use the limited
patient EHR in the target domain to �ne-tune the predictive model
learned from MetaPred, the prediction performance can be further
improved.

The rest of the paper is organized as follows: the problem setup
that introduces existing meta-learning methods brie�y is presented
in Section 2; the proposed framework MetaPred is introduced in
Section 3; experimental results are shown in Section 4 and conclu-
sion reaches at Section 5.

2 PROBLEM SETUP
Meta-learning, also know as learning to learn [22], aims to solve
a learning problem in the target task by leveraging the learning
experience from a set of related tasks. This learning scheme can
learn new concepts or skills fast with just a few training examples.
Meta-learning algorithms have been recently explored on a series of
topics including few-shot learning [27, 28], reinforcement learning
[10, 12] and imitation learning [13, 40]. They have also gained
successes in applications such as robotic [6, 13, 40] and neural
machine translation [14]. However, the application of meta-learning
in medicine has rarely been explored, despite the fact that most of
the medical problems are resource-limited as we mentioned in the
introduction.

Figure 1: Illustration of the proposed learning procedure. In
this example, our goal is to predict Alzheimer’s disease with
few labeled patients, which give rise to a low-resource clas-
si�cation. The idea is to employ labeled patients from high-
resource domains and design a learning to transfer frame-
work with sources and a simulated target in meta-learning.

In order to introduce our framework, we provide a graphical
illustration in Figure 1. Suppose the target task is the prediction of
the onset risk of Alzheimer’s Disease where we do not have enough
training patient samples, and we want to transfer knowledge from
other related disease domains with su�cient labels such as Mild
Cognitive Impairment (MCI) or Dementia. However, traditional
transfer learning would be also constrained by the small number
of training samples, especially for those with complicated neural
networks. Consequently, we take advantage of meta-learning by
setting a simulated target domain for learning to transfer. Though
applying meta-learning settings on the top of low-resource medical
records for disease prediction seems intuitive, how to set up the
problem is crucial.

More formally, we consider multiple related disease conditions as
the set of source domainsS1, · · · ,SK and a target domain T 0. This
leads to K + 1 domains in total. In each domain, we can construct
a training data set including the EHRs of both case (positive) and
control (negative) patients. We use the data collection {(X, y)}i , i =
0, 1, · · · ,K to denote the features and labels of the patients in these
K+1 domains. Our goal is to learn a predictivemodel f for the target
domain T 0. In the following we use � to denote the parameters
of f . Because only a limited number of samples are available in
T 0, we hope to leverage the data from those source domains, i.e.,
f = (DS ,X;�), where DS denotes the collection of data samples
in the source domains. From the perspective of domain adaptation
[26], the problem can be reduced to the design and optimization of
model f in an appropriate form of DS .

In this section we will mainly introduce how to utilize the source
domain data DS in our MetaPred framework. The details on the
design of f will be introduced in the next section. In general, su-
pervised meta-learning provides models trained by data episodes
{Di } which is composed of multiple samples. Each Di is usually
split into two parts according to their labels. We further refer to
the domain where the testing data are from the simulated target

Zhang X, Tang F, Dodge H, Zhou J, Wang F,. MetaPred: Meta-Learning for Clinical Risk Prediction with Limited Patient Electronic Health Records. In 
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) 2019. ACM.



Figure 1b illustrates the modified PageRank algorithm using
patients in the obese BMI cohort. First, the records from all
100,187 patients in the obese BMI cohort were extracted. Second,
connections were created between each of those patients and all
of their additional SEPs. By definition, this means connections to
any medication, diagnosis, or laboratory result that was present in
both that patient’s record and SPOKE. Third, a random walker
was initialized and allowed to either move to a neighboring node
(optimized damping factor= 0.9) or randomly jump to any SEP
with probability β (optimized β= 0.1). However, β was not evenly

distributed among the SEPs (as in the original algorithm), but was
instead weighted based on how important each SEP was for the
cohort (Supplementary Fig. 1). This weight is akin to having the
random walker jumping to a random patient in the cohort and
traversing to one of that patient’s SEPs (Supplementary Fig. 1A).
Each iteration resulted in a rank vector that reflects the
proportion of time the walker spent on each node in the network.
In practice, for each iteration, this was calculated by taking the
dot product of the transition probability matrix and the rank
vector from the previous iteration (see the Methods section).
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Fig. 1 Embedding EHR concepts in a knowledge network. a Distribution of patient BMIs at UCSF. Four BMI cohorts were created using the natural
boundaries of the BMI distribution (boxes I–IV: <18, 18–24.5, 24.6–29.5, and >29.6). Arrows at the bottom correspond to the BMIs that separate the
standardize weight classes. b Step 1: find the overlapping concepts between SPOKE and the patient data (EHRs). These are called SPOKE Entry Points
(SEPs). Step 2: choose any code or concept in the EHR to make cohort. Here, we have chosen patients with a high BMI (Cohort IV). Then connect each
patient in the cohort to all of the SEPs in their records. Step 3: perform PageRank such that the walker restarts in the patient cohort. Iterate until desired
threshold is reached. Step 4: final node ranks are then used to create the weights in the Propagated SPOKE Entry Vector (PSEV)
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Distribution of patient BMIs at UCSF. Four BMI cohorts were 
created using the natural boundaries of the BMI distribution 
(boxes I–IV: <18, 18–24.5, 24.6–29.5, and >29.6). Arrows at 
the bottom correspond to the BMIs that separate the 
standardize weight classes. 

• Step 1: find the overlapping concepts 
between SPOKE and the patient data (EHRs). 
These are called SPOKE Entry Points (SEPs). 

• Step 2: choose any code or concept in the EHR 
to make cohort. Here, we have chosen 
patients with a high BMI (Cohort IV). Then 
connect each patient in the cohort to all of
the SEPs in their records. 

• Step 3: perform PageRank such that the 
walker restarts in the patient cohort. Iterate 
until desired threshold is reached. 

• Step 4: final node ranks are then used to 
create the weights in the Propagated SPOKE 
Entry Vector (PSEV) 

Nelson, Charlotte A., Atul J. Butte, and Sergio E. Baranzini. 
"Integrating biomedical research and electronic health records to 
create knowledge-based biologically meaningful machine-readable 
embeddings." Nature communications 10, no. 1 (2019): 1-10.
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IBM Watson Imaging Clinical Review
• Watson Imaging Clinical Review improves the path from 

diagnosis to documentation, eliminating data leaks caused 
by incomplete or incorrect documentation. This innovative 
cognitive data review tool supports accurate and timely 
clinical and administrative decision-making by:
• Reading structured and unstructured data
• Understanding data to extract meaningful information
• Comparing clinical reports with the EMR problem list and 

recorded diagnosis
• Empowering users to input the correct information back into the 

EMR reports

• Watson Imaging Clinical Review enables reconciliation of 
inconsistencies between clinical diagnoses and 
administrative records. Those inconsistencies that can 
impact billing accuracy, quality metrics, and an 
organization’s bottom line.

14https://www.ibm.com/blogs/watson-health/introducing-ibm-watson-imaging-clinical-review/
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Figure 2. Model Architecture.

For each diagnosis description, we use both character-level LSTM network and word-level LSTM network to obtain its
hidden representation. Specifically, in the character-level LSTM, xxxt is the embedding vector of the tth character in the word,
and T is the total number of characters in this word. We select the hidden state of LSTM in the last time step as the hidden
representation of the word. In the word-level LSTM, xxxt is the hidden vector of the tth word in the sentence, and T is the
number of words. Similarly, we choose the last hidden state as the representation of the sentence. The reason why we choose
character-aware encoding method is there are considerable medical terms with same suffix denoting similar diseases and we
expect the character-level LSTM to capture such characteristics. In the following, we denote the hidden representations of the
written diagnosis descriptions as hhh1,,,hhh2,,, .........,,,hhhm, where m is the number of extracted diagnosis descriptions in one record.

ICD code encoder

For each ICD code, we adopt the same two-level LSTM architecture, i.e., character-level and word-level, to obtain the hidden
representation of its long title definition, which is provided in the MIMIC-III dataset. For example, in MIMIC-III, the long title
of ICD code ‘4010’ is ‘Malignant essential hypertension’. The hidden vector of ‘Malignant essential hypertension’ obtained
with the LSTM network serves as the representation of ICD code ‘4010’. The parameters of the neural networks for the ICD
code encoder and the diagnosis description encoder are not tied, in order to learn different language styles of these two sets of
texts. we use uuu1,,,uuu2,,, .........uuun to denote the hidden representations of different ICD codes obtained by their long title definitions,
where n is the total number of ICD categories. As in our experiment we have picked out the most frequent 50 codes, n = 50.

Attentional match

Typically, the number of written diagnosis descriptions does not equal to the number of assigned ICD codes, so we cannot
directly assign one code to one diagnosis description. Considering that human coders are supposed to assign appropriate codes
according to overall health condition, in parallel, we take all diagnosis descriptions into account during coding by adopting an
attention strategy. The attention mechanism provides a recipe for choosing which diagnosis descriptions are important when
performing coding.

We use ui,k and h j,k to represent the kth dimension of hidden representations of the ith ICD code and the jth diagnosis
description, respectively. For the ith ICD code, we use ai, j to denote its attention score on the jth diagnosis description, which is

4/11

Shi, Haoran, Pengtao Xie, Zhiting Hu, Ming Zhang, and Eric P. Xing. "Towards automated ICD coding using 
deep learning." arXiv preprint arXiv:1711.04075 (2017).
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"I’m an expert on trying to get the technology to work, 
not an expert on social policy. One place where I do have 
technical expertise that’s relevant is [whether] regulators 
should insist that you can explain how your AI system 
works. I think that would be a complete disaster."

"People can’t explain how they work, for most of the 
things they do... People have no idea how they do that. If 
you ask them to explain their decision, you are forcing 
them to make up a story."

https://www.wired.com/story/googles-ai-guru-computers-think-more-like-brains/
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We cannot divorce 'making things work' and 
'impact on society' when it comes to applied 
artificial intelligence. Frankly, your AI does not 
"work" if it is biased, perpetuates social 
inequality and discrimination, or reinforces 
unequal power structures. Setting up that 
delineation is not only dangerous, it sets up a 
false dichotomy of "tech innovators" versus 
"regulators." Regulation, whether in the form 
of social norms, guidelines, or enforceable law, 
is intended to enable trust and ease adoption 
of technology in a way that is beneficial to 
society. Safe innovation is enabled with well 
designed regulation.

His quoted paragraph is itself an 
explanation: an explanation of why he 
has reached the decision that 
explainability for AI would be a 
disaster. Is he making up a story about 
this? I imagine he would claim that he 
is not and that it is based on careful 
reasoning. But in reality, it is based on 
neurons in his brain firing in a 
particular way that nobody 
understands. The ability to communicate 
his reasons to others is a strength of 
the human brain. Philosopher Daniel 
Dennett claims that consciousness itself 
is simply our brain creating an `edited 
digest’ of our brains inner workers for 
precisely the purpose of communicating 
our thoughts and intentions (including 
explanations) to others.

https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-
hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-
hes-wrong/#6f91ac93756d

https://www.forbes.com/sites/cognitiveworld/2018/12/20/geoff-hinton-dismissed-the-need-for-explainable-ai-8-experts-explain-why-hes-wrong/%236f91ac93756d
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Data Bias/Model Generalizability
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The first is a training problem. A.I. 
must learn to diagnose disease on 
large data sets, and if that data 
doesn’t include enough patients 
from a particular background, it 
won’t be as reliable for them.

Second, because A.I. is trained on 
real-world data, it risks 
incorporating, entrenching and 
perpetuating the economic and 
social biases that contribute to 
health disparities in the first place.

Finally, even ostensibly fair, 
neutral A.I. has the potential to 
worsen disparities if its 
implementation has 
disproportionate effects for 
certain groups.

https://www.nytimes.com/2019/01/31/opinion/ai-bias-healthcare.html
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differently depending on skin type. If adequate representation of skin
of color falls short, as it has in mainstream dermatology textbooks, ben-
efits of ML in skin of color could be hindered.7 At this early stage in

the development of ML technology we have an opportunity to inter-
vene and reduce its potential effects on health care disparities in
skin of color.
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Figure. Machine Learning Process for Pigmented Lesions
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set and a smaller testing image set. The machine learning algorithm (center)
uses the training images to learn how to correctly categorize pigmented lesions
based on their visual features. The model is then tested with the testing images

set to determine model accuracy. The algorithm model is fine-tuned with more
training and testing images. Once the machine learning algorithm is developed,
it can be used on new images. The output gives an estimate of the likelihood of
a given result.
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Potential Bias

• In the International Skin Imaging Collaboration: 
Melanoma Project, which is one of the largest and 
often-used, open- source, public-access archives of 
pigmented lesions, much of the patient data are 
heavily collected from fair-skinned populations in the 
United States, Europe, and Australia. Thus, no matter 
how advanced the ML algorithm, it may underperform 
on images of lesions in skin of color. 
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Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer1,2*, Brian Powers3, Christine Vogeli4, Sendhil Mullainathan5*†

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional
help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
illness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health
by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

T
here is growing concern that algorithms
may reproduce racial and gender dis-
parities via the people building them or
through the data used to train them (1–3).
Empirical work is increasingly lending

support to these concerns. For example, job
search ads for highly paid positions are less
likely to be presented to women (4), searches
for distinctively Black-sounding names are
more likely to trigger ads for arrest records
(5), and image searches for professions such
as CEO produce fewer images of women (6).
Facial recognition systems increasingly used
in law enforcement perform worse on recog-
nizing faces of women and Black individuals
(7, 8), and natural language processing algo-
rithms encode language in gendered ways (9).
Empirical investigations of algorithmic bias,

though, have been hindered by a key constraint:
Algorithms deployed on large scales are typically
proprietary, making it difficult for indepen-
dent researchers to dissect them. Instead, re-
searchers must work “from the outside,” often
with great ingenuity, and resort to clever work-
arounds such as audit studies. Such efforts can
document disparities, but understanding how
and why they arise—much less figuring out
what to do about them—is difficult without
greater access to the algorithms themselves.
Our understanding of a mechanism therefore
typically relies on theory or exercises with

researcher-created algorithms (10–13). With-
out an algorithm’s training data, objective func-
tion, and predictionmethodology, we can only
guess as to the actual mechanisms for the
important algorithmic disparities that arise.
In this study, we exploit a rich dataset that

provides insight into a live, scaled algorithm
deployed nationwide today. It is one of the
largest and most typical examples of a class
of commercial risk-prediction tools that, by
industry estimates, are applied to roughly
200 million people in the United States each
year. Large health systems and payers rely on
this algorithm to target patients for “high-risk
care management” programs. These programs
seek to improve the care of patients with
complex health needs by providing additional
resources, including greater attention from
trained providers, to help ensure that care is
well coordinated. Most health systems use
these programs as the cornerstone of pop-
ulation health management efforts, and they
are widely considered effective at improving
outcomes and satisfaction while reducing costs
(14–17). Because the programs are themselves
expensive—with costs going toward teams of
dedicated nurses, extra primary care appoint-
ment slots, and other scarce resources—health
systems rely extensively on algorithms to iden-
tify patients who will benefit the most (18, 19).
Identifying patients who will derive the

greatest benefit from these programs is a
challenging causal inference problem that
requires estimation of individual treatment ef-
fects. To solve this problem, health systems
make a key assumption: Those with the great-
est care needs will benefit the most from the
program. Under this assumption, the targeting
problem becomes a pure prediction policy prob-
lem (20). Developers then build algorithms

that rely on past data to build a predictor of
future health care needs.
Our dataset describes one such typical algo-

rithm. It contains both the algorithm’s predic-
tions as well as the data needed to understand
its inner workings: that is, the underlying in-
gredients used to form the algorithm (data,
objective function, etc.) and links to a rich
set of outcome data. Because we have the
inputs, outputs, and eventual outcomes, our
data allow us a rare opportunity to quantify
racial disparities in algorithms and isolate the
mechanisms by which they arise. It should be
emphasized that this algorithm is not unique.
Rather, it is emblematic of a generalized ap-
proach to risk prediction in the health sec-
tor, widely adopted by a range of for- and
non-profit medical centers and governmental
agencies (21).
Our analysis has implications beyond what

we learn about this particular algorithm. First,
the specific problem solved by this algorithm
has analogies in many other sectors: The pre-
dicted risk of some future outcome (in our
case, health care needs) is widely used to tar-
get policy interventions under the assumption
that the treatment effect is monotonic in that
risk, and the methods used to build the algo-
rithm are standard. Mechanisms of bias un-
covered in this study likely operate elsewhere.
Second, even beyond our particular finding,
we hope that this exercise illustrates the im-
portance, and the large opportunity, of study-
ing algorithmic bias in health care, not just
as a model system but also in its own right. By
any standard—e.g., number of lives affected,
life-and-death consequences of the decision—
health is one of the most important and wide-
spread social sectors in which algorithms are
already used at scale today, unbeknownst
to many.

Data and analytic strategy

Working with a large academic hospital, we
identified all primary care patients enrolled
in risk-based contracts from2013 to 2015. Our
primary interest was in studying differences
betweenWhite and Black patients.We formed
race categories by using hospital records,which
are based onpatient self-reporting. Any patient
who identified as Black was considered to be
Black for the purpose of this analysis. Of the
remaining patients, those who self-identified
as races other thanWhite (e.g., Hispanic) were
so considered (data on these patients are pre-
sented in table S1 and fig. S1 in the supplemen-
tary materials). We considered all remaining
patients to beWhite. This approach allowed
us to study one particular racial difference of
social and historical interest between patients
who self-identified as Black and patients who
self-identified as White without another race
or ethnicity; it has the disadvantage of not
allowing for the study of intersectional racial
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of substantial disparities in program screening.
We quantify this by simulating a counterfactual
world with no gap in health conditional on
risk. Specifically, at some risk threshold a, we
identify the supramarginal White patient (i)
with Ri > a and compare this patient’s health
to that of the inframarginal Black patient ( j )
with Rj < a. IfHi >Hj , as measured by number
of chronic medical conditions, we replace the
(healthier, but supramarginal) White patient
with the (sicker, but inframarginal) Black patient.
We repeat this procedure until Hi = Hj, to
simulate an algorithm with no predictive gap
between Blacks and Whites. Fig. 1B shows the
results: At all risk thresholds a above the 50th
percentile, this procedure would increase the
fraction of Black patients. For example, at a =
97th percentile, among those auto-identified
for the program, the fraction of Black patients
would rise from 17.7 to 46.5%.
We then turn to amoremultidimensional pic-

ture of the complexity and severity of patients’
health status, as measured by biomarkers that
index the severity of the most common chro-
nic illnesses in our sample (as shown inTable 1).
This allows us to identify patients who might
derive a great deal of benefit from care man-
agement programs—e.g., patients with severe

diabetes who are at risk of catastrophic com-
plications if they do not lower their blood sugar
(18, 26). (The materials and methods section
describes several experiments to rule out a large
effect of the program on these health measures
in year t; had there been such an effect, we
could not easily use the measures to assess the
accuracy of the algorithm’s predictions onhealth,
because the program is allocated as a function
of algorithm score.) Across all of these impor-
tant markers of health needs—severity of diabe-
tes, highbloodpressure, renal failure, cholesterol,
and anemia—we find that Blacks are substan-
tially less healthy than Whites at any level of
algorithmpredictions, as shown in Fig. 2. Blacks
havemore-severe hypertension, diabetes, renal
failure, and anemia, and higher cholesterol.
Themagnitudes of these differences are large:
For example, differences in severity of hyper-
tension (systolic pressure: 5.7 mmHg) and
diabetes [glycated hemoglobin (HbA1c): 0.6%]
imply differences in all-causemortality of 7.6%
(27) and 30% (28), respectively, calculatedusing
data fromclinical trials and longitudinal studies.

Mechanism of bias

An unusual aspect of our dataset is that we
observe the algorithm’s inputs and outputs

as well as its objective function, providing us
a unique window into the mechanisms by
which bias arises. In our setting, the algorithm
takes in a large set of raw insurance claims
data Xi,t−1 (features) over the year t − 1: demo-
graphics (e.g., age, sex), insurance type, diag-
nosis and procedure codes, medications, and
detailed costs. Notably, the algorithm specifi-
cally excludes race.
The algorithm uses these data to predict Yi,t

(i.e., the label). In this instance, the algorithm
takes total medical expenditures (for simplic-
ity, we denote “costs” Ct) in year t as the label.
Thus, the algorithm’s prediction on health
needs is, in fact, a prediction on health costs.
As a first check on this potential mechanism

of bias, we calculate the distribution of real-
ized costs C versus predicted costs R. By this
metric, one could call the algorithm unbiased.
Fig. 3A shows that, at every level of algorithm-
predicted risk, Blacks andWhites have (rough-
ly) the same costs the following year. In other
words, the algorithm’s predictions are well cal-
ibrated across races. For example, at the med-
ian risk score, Black patients had costs of $5147
versus $4995 for Whites (U.S. dollars); in the
top 5% of algorithm-predicted risk, costs were
$35,541 for Blacks versus $34,059 for Whites.
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Fig. 1. Number of chronic illnesses versus algorithm-predicted risk,
by race. (A) Mean number of chronic conditions by race, plotted against
algorithm risk score. (B) Fraction of Black patients at or above a given risk
score for the original algorithm (“original”) and for a simulated scenario
that removes algorithmic bias (“simulated”: at each threshold of risk, defined
at a given percentile on the x axis, healthier Whites above the threshold are

replaced with less healthy Blacks below the threshold, until the marginal patient
is equally healthy). The × symbols show risk percentiles by race; circles
show risk deciles with 95% confidence intervals clustered by patient. The
dashed vertical lines show the auto-identification threshold (the black
line, which denotes the 97th percentile) and the screening threshold (the gray
line, which denotes the 55th percentile).
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At the same level of 
algorithm-predicted risk, 
Blacks have significantly 
more illness burden than 
Whites 

For patients at the 97th 
percentile of risk score, at 
which patients are auto-
identified for program 
enrollment. Blacks have 
26.3% more chronic ill-
nesses than Whites (4.8 
versus 3.8 distinct 
conditions; P < 0.001). 
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Adversarial Attack

29

Adversarial machine learning is a technique employed in 
the field of machine learning which attempts to fool models 
through malicious input. This technique can be applied for 
a variety of reasons, the most common being to attack or 
cause a malfunction in standard machine learning models.

https://arxiv.org/abs/1412.6572

https://arxiv.org/abs/1412.6572
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Inputs Accuracy AUC Avg. Conf.

Fundoscopy
Clean 91.0% 0.910 90.4%
White Box 0.00% 0.000 100.0%
Black Box 0.01% 0.002 90.9%

Chest X-Ray
Clean 94.9% 0.937 96.1%
White Box 0.00% 0.000 100.0%
Black Box 15.1% 0.014 92.6%

Dermoscopy
Clean 87.6% 0.858 94.1%
White Box 0.00% 0.000 100.0%
Black Box 37.9% 0.071 92.0%

Table 2: Results of medical deep learning models on clean test set data, white box, and black box
attacks.

The results of our attacks are depicted in Table 4.2 and in Figure 2. Unsurprisingly, they were
effective against all three systems. Additional examples (along with the adversarial noise) can be
found in the appendix. Code can be found at [https://github.com/sgfin/adversarial-medicine]

Figure 2: Characteristic results of adversarial example generation. The percentage displayed on
the bottom left of each image represents the probability that the model assigns that image of being
diseased. Green = Model is correct on that image. Red = Model is incorrect. As can be seen, in
each case, human imperceptible changes were sufficient to make the classifier 100% confident in the
wrong classification.

5 Discussion

We now discuss how someone might perform adversarial attacks against the systems developed
in previous section under a realistic set of conditions. For the purposes of illustration, consider
a scenario where these systems have been subjected to extensive testing and validation and are
now clinically deployed. These systems would function much like laboratory tests do now and
provide confirmation of suspected diagnoses. In some instances, an insurance company may require
a confirmatory diagnosis from one of these systems in order for a reimbursement to be made. We
provide the example below to show that in many instances there is both the opportunity and incentive
for someone to use an adversarial example to defraud the healthcare system.

7



Adversarial Attack on EHR
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Adversarial Behavior
• Medical claims codes determine reimbursement for a 

patient visit after they have been approved by a payer 
• To evaluate these claims, payers typically leverage 

automated fraud detectors, powered increasingly by 
machine learning
• Although some providers may submit overtly fictitious 

medical claims, misrepresentation of patient data often 
takes much more subtle forms 
• intentional upcoding is the practice of systematically submitting 

billing codes for services related to, but more expensive than, 
those that were actually performed

• providers are not encouraged to add fraudulent claims but are 
encouraged to avoid adding a true claim that an insur- ance
company would be likely to reject in combination with another. 

34



A Future Scenario
• if an insurance company requires that an image from a 

mole be run through a melanoma classifier before 
approving reimbursement for an excision 
• fraudsters may at first be inclined to submit moles from 

different patients to achieve approval 
• If insurance companies then begin utilizing human audits 

or technical tests to try to ensure that the images are 
coming from the correct patient, the next round would be 
to move to full adversarial attacks with imperceptible 
alterations 
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case of structured data such as billing codes, 

adversarial techniques could be used to au-

tomate the discovery of code combinations 

that maximize reimbursement or minimize 

the probability of claims rejection.

Because adversarial attacks have been 

demonstrated for virtually every class of ma-

chine-learning algorithms ever studied, from 

simple and readily interpretable methods 

such as logistic regression to more compli-

cated methods such as deep neural networks 

(1), this is not a problem specific to medicine, 

and every domain of machine-learning ap-

plication will need to contend with it. Re-

searchers have sought to develop algorithms 

that are resilient to adversarial attacks, such 

as by training algorithms with exposure to 

adversarial examples or using clever data 

processing to mitigate potential tampering 

(1). Early efforts in this area are promising, 

and we hope that the pursuit of fully robust 

machine-learning models will catalyze the 

development of algorithms that learn to 

make decisions for consistently explainable 

and appropriate reasons. Nevertheless, cur-

rent general-use defensive techniques come 

at a material degeneration of accuracy, even 

if sometimes at improved explainability (10). 

Thus, the models that are both highly accu-

rate and robust to adversarial examples re-

main an open problem in computer science.

These challenges are compounded in the 

medical context. Medical information tech-

nology (IT) systems are notoriously difficult 

to update, so any new defenses could be diffi-

cult to roll out. In addition, the ground truth 

in medical diagnoses is often ambiguous, 

meaning that for many cases no individual 

human can definitively assign the true label 

between, say, “benign” and “cancerous” on a 

photograph of a mole. This could enable bad 

actors to selectively perturb borderline cases 

without easy means of review, consistently 

nudging scales in their direction.

EXISTING ADVERSARIAL BEHAVIOR
Cutting-edge adversarial attacks have yet to 

be found in the health care context, though 

less formalized adversarial practice is ex-

tremely common. This existing activity sug-

gests that incentives for more sophisticated 

adversarial attacks may already be in place. 

To illustrate existing behaviors, we look to 

the modern U.S. medical billing industry.

Medical claims codes determine reim-

bursement for a patient visit after they 

have been approved by a payer. To evaluate 

these claims, payers typically leverage au-

tomated fraud detectors, powered increas-

ingly by machine learning. Health care 

providers have long exerted influence on 

payers’ decisions (the algorithmic outputs) 

by shaping their records (and accompany-

ing codes) of patient visits (the inputs) (5).

At the extreme of this tactical shaping of 

a patient presentation is medical fraud, a 

$250 billion industry (11). Although some 

providers may submit overtly fictitious medi-

cal claims, misrepresentation of patient data 

often takes much more subtle forms. For ex-

ample, intentional upcoding is the practice 

of systematically submitting billing codes 

for services related to, but more expensive 

than, those that were actually performed. 

This practice is rampant and is just one of 

many questionable billing practices deployed 

in clinical practice. Some physicians, for ex-

ample, are inclined to report exaggerated an-

esthesia times to increase revenue (12).

In other circumstances, subtle billing 

code adjustments fall within a gray zone 

between fraud and well-intentioned best 

practices. In one striking example, the web-

site of the Endocrine Society recommends 

that providers do not bill for the Interna-

tional Classification of Diseases (ICD) code 

277.77 (metabolic syndrome) in patients 

with obesity, as this combination of code 

and condition is likely to result in a denial 

of coverage (13). Instead, the Society recom-

mends billing for codes corresponding to 

specific diseases that make up metabolic 

syndrome, such as hypertension. In other 

words, providers are not encouraged to 

add fraudulent claims but are encouraged 

to avoid adding a true claim that an insur-

ance company would be likely to reject in 

combination with another. This recommen-

dation is arguably motivated to serve the 

patients seeking coverage, not only the doc-

tors receiving reimbursement. However, it 

highlights both a moral gray zone and the 

type of strategy that providers might use 

to achieve the same end result as upcoding 

without ever committing overt fraud.

A GROWTH INDUSTRY
As the machine-learning tool kit used by 

insurance companies and their contrac-

tors continues to expand, the same dynam-

ics that favor creative billing practices in 

the present may expand to include more 

sophisticated adversarial attacks. Adver-

sarial methods could allow billing teams to 

scale up upcoding practices without getting 

flagged by fraud detectors. Many insurance 
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The patient has a history of 
back pain and chronic alcohol 

abuse and more recently has 
been seen in several...
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Dermatoscopic image of a benign 
melanocytic nevus, along with the 
diagnostic probability computed 
by a deep neural network.

Perturbation computed 
by a common adversarial 
attack technique.

See (7) for details.

Combined image of nevus and 
attack perturbation and the 
diagnostic probabilities from 
the same deep neural network.
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The anatomy of an adversarial attack 
Demonstration of how adversarial attacks against various medical AI systems might be 
executed without requiring any overtly fraudulent misrepresentation of the data.
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case of structured data such as billing codes, 

adversarial techniques could be used to au-

tomate the discovery of code combinations 

that maximize reimbursement or minimize 

the probability of claims rejection.

Because adversarial attacks have been 

demonstrated for virtually every class of ma-

chine-learning algorithms ever studied, from 

simple and readily interpretable methods 

such as logistic regression to more compli-

cated methods such as deep neural networks 

(1), this is not a problem specific to medicine, 

and every domain of machine-learning ap-

plication will need to contend with it. Re-

searchers have sought to develop algorithms 

that are resilient to adversarial attacks, such 

as by training algorithms with exposure to 

adversarial examples or using clever data 

processing to mitigate potential tampering 

(1). Early efforts in this area are promising, 

and we hope that the pursuit of fully robust 

machine-learning models will catalyze the 

development of algorithms that learn to 

make decisions for consistently explainable 

and appropriate reasons. Nevertheless, cur-

rent general-use defensive techniques come 

at a material degeneration of accuracy, even 

if sometimes at improved explainability (10). 

Thus, the models that are both highly accu-

rate and robust to adversarial examples re-

main an open problem in computer science.

These challenges are compounded in the 

medical context. Medical information tech-

nology (IT) systems are notoriously difficult 

to update, so any new defenses could be diffi-

cult to roll out. In addition, the ground truth 

in medical diagnoses is often ambiguous, 

meaning that for many cases no individual 

human can definitively assign the true label 

between, say, “benign” and “cancerous” on a 

photograph of a mole. This could enable bad 

actors to selectively perturb borderline cases 

without easy means of review, consistently 

nudging scales in their direction.

EXISTING ADVERSARIAL BEHAVIOR
Cutting-edge adversarial attacks have yet to 

be found in the health care context, though 

less formalized adversarial practice is ex-

tremely common. This existing activity sug-

gests that incentives for more sophisticated 

adversarial attacks may already be in place. 

To illustrate existing behaviors, we look to 

the modern U.S. medical billing industry.

Medical claims codes determine reim-

bursement for a patient visit after they 

have been approved by a payer. To evaluate 

these claims, payers typically leverage au-

tomated fraud detectors, powered increas-

ingly by machine learning. Health care 

providers have long exerted influence on 

payers’ decisions (the algorithmic outputs) 

by shaping their records (and accompany-

ing codes) of patient visits (the inputs) (5).

At the extreme of this tactical shaping of 

a patient presentation is medical fraud, a 

$250 billion industry (11). Although some 

providers may submit overtly fictitious medi-

cal claims, misrepresentation of patient data 

often takes much more subtle forms. For ex-

ample, intentional upcoding is the practice 

of systematically submitting billing codes 

for services related to, but more expensive 

than, those that were actually performed. 

This practice is rampant and is just one of 

many questionable billing practices deployed 

in clinical practice. Some physicians, for ex-

ample, are inclined to report exaggerated an-

esthesia times to increase revenue (12).

In other circumstances, subtle billing 

code adjustments fall within a gray zone 

between fraud and well-intentioned best 

practices. In one striking example, the web-

site of the Endocrine Society recommends 

that providers do not bill for the Interna-

tional Classification of Diseases (ICD) code 

277.77 (metabolic syndrome) in patients 

with obesity, as this combination of code 

and condition is likely to result in a denial 

of coverage (13). Instead, the Society recom-

mends billing for codes corresponding to 

specific diseases that make up metabolic 

syndrome, such as hypertension. In other 

words, providers are not encouraged to 

add fraudulent claims but are encouraged 

to avoid adding a true claim that an insur-

ance company would be likely to reject in 

combination with another. This recommen-

dation is arguably motivated to serve the 

patients seeking coverage, not only the doc-

tors receiving reimbursement. However, it 

highlights both a moral gray zone and the 

type of strategy that providers might use 

to achieve the same end result as upcoding 

without ever committing overt fraud.

A GROWTH INDUSTRY
As the machine-learning tool kit used by 

insurance companies and their contrac-

tors continues to expand, the same dynam-

ics that favor creative billing practices in 

the present may expand to include more 

sophisticated adversarial attacks. Adver-

sarial methods could allow billing teams to 

scale up upcoding practices without getting 

flagged by fraud detectors. Many insurance 
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case of structured data such as billing codes, 

adversarial techniques could be used to au-

tomate the discovery of code combinations 

that maximize reimbursement or minimize 

the probability of claims rejection.

Because adversarial attacks have been 

demonstrated for virtually every class of ma-

chine-learning algorithms ever studied, from 

simple and readily interpretable methods 

such as logistic regression to more compli-

cated methods such as deep neural networks 

(1), this is not a problem specific to medicine, 

and every domain of machine-learning ap-

plication will need to contend with it. Re-

searchers have sought to develop algorithms 

that are resilient to adversarial attacks, such 

as by training algorithms with exposure to 

adversarial examples or using clever data 

processing to mitigate potential tampering 

(1). Early efforts in this area are promising, 

and we hope that the pursuit of fully robust 

machine-learning models will catalyze the 

development of algorithms that learn to 

make decisions for consistently explainable 

and appropriate reasons. Nevertheless, cur-

rent general-use defensive techniques come 

at a material degeneration of accuracy, even 

if sometimes at improved explainability (10). 

Thus, the models that are both highly accu-

rate and robust to adversarial examples re-

main an open problem in computer science.

These challenges are compounded in the 

medical context. Medical information tech-

nology (IT) systems are notoriously difficult 

to update, so any new defenses could be diffi-

cult to roll out. In addition, the ground truth 

in medical diagnoses is often ambiguous, 

meaning that for many cases no individual 

human can definitively assign the true label 

between, say, “benign” and “cancerous” on a 

photograph of a mole. This could enable bad 

actors to selectively perturb borderline cases 

without easy means of review, consistently 

nudging scales in their direction.

EXISTING ADVERSARIAL BEHAVIOR
Cutting-edge adversarial attacks have yet to 

be found in the health care context, though 

less formalized adversarial practice is ex-

tremely common. This existing activity sug-

gests that incentives for more sophisticated 

adversarial attacks may already be in place. 

To illustrate existing behaviors, we look to 

the modern U.S. medical billing industry.

Medical claims codes determine reim-

bursement for a patient visit after they 

have been approved by a payer. To evaluate 

these claims, payers typically leverage au-

tomated fraud detectors, powered increas-

ingly by machine learning. Health care 

providers have long exerted influence on 

payers’ decisions (the algorithmic outputs) 

by shaping their records (and accompany-

ing codes) of patient visits (the inputs) (5).

At the extreme of this tactical shaping of 

a patient presentation is medical fraud, a 

$250 billion industry (11). Although some 

providers may submit overtly fictitious medi-

cal claims, misrepresentation of patient data 

often takes much more subtle forms. For ex-

ample, intentional upcoding is the practice 

of systematically submitting billing codes 

for services related to, but more expensive 

than, those that were actually performed. 

This practice is rampant and is just one of 

many questionable billing practices deployed 

in clinical practice. Some physicians, for ex-

ample, are inclined to report exaggerated an-

esthesia times to increase revenue (12).

In other circumstances, subtle billing 

code adjustments fall within a gray zone 

between fraud and well-intentioned best 

practices. In one striking example, the web-

site of the Endocrine Society recommends 

that providers do not bill for the Interna-

tional Classification of Diseases (ICD) code 

277.77 (metabolic syndrome) in patients 

with obesity, as this combination of code 

and condition is likely to result in a denial 

of coverage (13). Instead, the Society recom-

mends billing for codes corresponding to 

specific diseases that make up metabolic 

syndrome, such as hypertension. In other 

words, providers are not encouraged to 

add fraudulent claims but are encouraged 

to avoid adding a true claim that an insur-

ance company would be likely to reject in 

combination with another. This recommen-

dation is arguably motivated to serve the 

patients seeking coverage, not only the doc-

tors receiving reimbursement. However, it 

highlights both a moral gray zone and the 

type of strategy that providers might use 

to achieve the same end result as upcoding 

without ever committing overt fraud.

A GROWTH INDUSTRY
As the machine-learning tool kit used by 

insurance companies and their contrac-

tors continues to expand, the same dynam-

ics that favor creative billing practices in 

the present may expand to include more 

sophisticated adversarial attacks. Adver-

sarial methods could allow billing teams to 

scale up upcoding practices without getting 

flagged by fraud detectors. Many insurance 
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case of structured data such as billing codes, 

adversarial techniques could be used to au-

tomate the discovery of code combinations 

that maximize reimbursement or minimize 

the probability of claims rejection.

Because adversarial attacks have been 

demonstrated for virtually every class of ma-

chine-learning algorithms ever studied, from 

simple and readily interpretable methods 

such as logistic regression to more compli-

cated methods such as deep neural networks 

(1), this is not a problem specific to medicine, 

and every domain of machine-learning ap-

plication will need to contend with it. Re-

searchers have sought to develop algorithms 

that are resilient to adversarial attacks, such 

as by training algorithms with exposure to 

adversarial examples or using clever data 

processing to mitigate potential tampering 

(1). Early efforts in this area are promising, 

and we hope that the pursuit of fully robust 

machine-learning models will catalyze the 

development of algorithms that learn to 

make decisions for consistently explainable 

and appropriate reasons. Nevertheless, cur-

rent general-use defensive techniques come 

at a material degeneration of accuracy, even 

if sometimes at improved explainability (10). 

Thus, the models that are both highly accu-

rate and robust to adversarial examples re-

main an open problem in computer science.

These challenges are compounded in the 

medical context. Medical information tech-

nology (IT) systems are notoriously difficult 

to update, so any new defenses could be diffi-

cult to roll out. In addition, the ground truth 

in medical diagnoses is often ambiguous, 

meaning that for many cases no individual 

human can definitively assign the true label 

between, say, “benign” and “cancerous” on a 

photograph of a mole. This could enable bad 

actors to selectively perturb borderline cases 

without easy means of review, consistently 

nudging scales in their direction.

EXISTING ADVERSARIAL BEHAVIOR
Cutting-edge adversarial attacks have yet to 

be found in the health care context, though 

less formalized adversarial practice is ex-

tremely common. This existing activity sug-

gests that incentives for more sophisticated 

adversarial attacks may already be in place. 

To illustrate existing behaviors, we look to 

the modern U.S. medical billing industry.

Medical claims codes determine reim-

bursement for a patient visit after they 

have been approved by a payer. To evaluate 

these claims, payers typically leverage au-

tomated fraud detectors, powered increas-

ingly by machine learning. Health care 

providers have long exerted influence on 

payers’ decisions (the algorithmic outputs) 

by shaping their records (and accompany-

ing codes) of patient visits (the inputs) (5).

At the extreme of this tactical shaping of 

a patient presentation is medical fraud, a 

$250 billion industry (11). Although some 

providers may submit overtly fictitious medi-

cal claims, misrepresentation of patient data 

often takes much more subtle forms. For ex-

ample, intentional upcoding is the practice 

of systematically submitting billing codes 

for services related to, but more expensive 

than, those that were actually performed. 

This practice is rampant and is just one of 

many questionable billing practices deployed 

in clinical practice. Some physicians, for ex-

ample, are inclined to report exaggerated an-

esthesia times to increase revenue (12).

In other circumstances, subtle billing 

code adjustments fall within a gray zone 

between fraud and well-intentioned best 

practices. In one striking example, the web-

site of the Endocrine Society recommends 

that providers do not bill for the Interna-

tional Classification of Diseases (ICD) code 

277.77 (metabolic syndrome) in patients 

with obesity, as this combination of code 

and condition is likely to result in a denial 

of coverage (13). Instead, the Society recom-

mends billing for codes corresponding to 

specific diseases that make up metabolic 

syndrome, such as hypertension. In other 

words, providers are not encouraged to 

add fraudulent claims but are encouraged 

to avoid adding a true claim that an insur-

ance company would be likely to reject in 

combination with another. This recommen-

dation is arguably motivated to serve the 

patients seeking coverage, not only the doc-

tors receiving reimbursement. However, it 

highlights both a moral gray zone and the 

type of strategy that providers might use 

to achieve the same end result as upcoding 

without ever committing overt fraud.

A GROWTH INDUSTRY
As the machine-learning tool kit used by 

insurance companies and their contrac-

tors continues to expand, the same dynam-

ics that favor creative billing practices in 

the present may expand to include more 

sophisticated adversarial attacks. Adver-

sarial methods could allow billing teams to 

scale up upcoding practices without getting 

flagged by fraud detectors. Many insurance 
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”The greatest opportunity offered by AI is
not reducing errors or workloads, or even
curing cancer: it is the opportunity to
restore the precious and time-honored
connection and trust—the human touch—
between patients and doctors”
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