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Electronic Health Record (EHR)

B EHR has been one of the most common data sources to provide
patient health information for analysis

Trends in Hospital & Physician EHR Adoption
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(Figure source: https://www.healthit.gov/data/quickstats/national-trends-hospital-and-physician-adoption-electronic-health-records)

4



Important Task with EHR : Risk Prediction

B Predict the probability (risk) that an adverse event will happen in the
future

EHR Data Future Event
Lab Tests Vital Signs
Bl -
ﬁ, E X X

Diag Codes

predict

| &

Time



Risk Prediction with EHR

B Transform EHR data into a feature vector, input the vector to a predictor
for risk prediction

e Directly summarize the statistics of each event or test within the collection
window

* Organize the EHR data as a sequence and directly input it to an encoder (e.g.,
recurrent neural networks)

EHR Data Future Event
X X
X X X
— — X
X X
X X X




Workflow of Risk Prediction with EHR
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Testing of COVID Infection

Daily new COVID-19 tests per 1,000 people
7-day rolling average. Comparisons across countries are affected by differences in testing policies and reporting
methods.

United States

ests performed

0 T T )
Mar 8, 2020 Nov 16, 2020 Jun 4, 2021 Jun 18, 2022

Source: Official data collated by Our World in Data cc BY
Note: Our data on COVID-19 tests and positive rate is no longer updated since 23 June 2022.
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RT-PCR Testing of COVID Infection

B Reverse transcription polymerase chain reaction (RT-PCR) test

B The turn-around time (TAT) of RT-PCR testing is usually within 2days, may
be Ionger due to many reasons

a , c d e
/

/ RNA 9% cDNA % Amplification and detection
/
) , <>

RNA Transfer to Barcoding and

Sampling Inactlvatlon extraction plate RT-gPCR Sequencing
g f

No extraction

OR =—=

Direct inactivation
No extraction

Smyrlaki, loanna, Martin Ekman, Antonio Lentini, Nuno Rufino de Sousa, Natali Papanicolaou, Martin Vondracek, Johan Aarum et al. "Massive and rapid
COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR." Nature communications 11, no. 1 (2020): 4812.
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Predict RT-PCR Testing with Routine Lab Tests

ﬁ
f rRT-PCR te} wac [ Gradient BoostirQ
Neutrophil | | Decision Tree

-2 day

(=R 5, o, T,

\ / Time y : : \ \

Routine laboratory test -Dimer e &
k outine faboratory tests ) LDH ] \ o ue )y Infection risk
Data collection Feature construction Classification

Fig. 2. lllustration of the modeling pipeline. Routine laboratory testing results completed within 2 days prior to the release of
RT-PCR results were used to construct a vector, upon which a classifier was built to predict the RT-PCR positive or negative result.
Each dimension of the vector corresponds to a specific laboratory test, and its value corresponds to the average of all results of
this laboratory test taken during the collection window. The model outputs a probability score ranging from 0-1, indicating the
risk of SARS-CoV-2 infection.

Yang, He S., Yu Hou, Ljiljana V. Vasovic, Peter AD Steel, Amy Chadburn, Sabrina E. Racine-Brzostek, Priya Velu et al. "Routine laboratory blood tests predict
SARS-CoV-2 infection using machine learning." Clinical chemistry 66, no. 11 (2020): 1396-1404.
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Prediction Performance

(a) Receiver Operator Characteristic Curve
10- el
T
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] ./ : -~ = Gradient Boosted Decision Trees, AUC=0.854
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(b)
Agreement with
| AUC—Sensitivity | Specificity — RT-PCR
</ 0.854 0.761 0.808 0.791
_GBDT | (0.829-0.878) | (0.744-0.778) | (0.795-0.821) | (0.776-0.805) -
Random 0.843 0.735 0.818 0.787
Forest | (0.823-0.874) | (0.715-0.754) | (0.804-0.832) | (0.771-0.802)
Logistic 0.809 0.711 0.756 0.739
Regression| (0.781-0.836) | (0.689-0.732) | (0.741-0.771) | (0.722-0.756)
Decision 0.704 0.618 0.732 0.689
Tree (0.669-0.731) | (0.599-0.637) | (0.718-0.746) | (0.673-0.705)

Fig. 3. Performance of 4 models using 5-fold cross validation on the test set. (a) Comparison of the ROC curves for the gradient
boosting decision tree (GBDT) model, random tree model, logistic regression model, and decision tree model. (b) Comparison of
the AUC, sensitivity, specificity, and agreement with SARS-CoV-2 RT-PCR (at the operating point determined by the Youden

Index) achieved by the 4 models.
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Parathyroid Hormone-related Peptide (PTHrP)

B PTHrP is the most common cause of humoral malignancy-related hypercalcemia
B PTHrP testing can aid in diagnosing hypercalcemia of malignancy

Stimulates
resorption

_ ‘\TUMOR CELLS

Stimulates

— PTHIP
expression

Elevated Ca?*
concentrations

Stimulates
Ca’* reabsorption

OSTEOBLASTS

BONE

OSTEOCLASTS

Mundy, Gregory R., and James R. Edwards. "PTH-related peptide (PTHrP) in hypercalcemia." Journal of the American Society of Nephrology 19, no. 4 (2008):
672-675.
12



Hypercalcemia Testing Algorithm

Indications for Testing

m Ca > 10.3 mg/dL
Lab Tests / (SGL> me/dL)

Order serum/plasma Ca
ﬁ Or ionized Ca

Hypercalcemia confirmed

Order Intact PTH

Low l High

Low or Normal

Vit D excess cancer

(Algorithm adopted from ARUP Consult)
13



@ Community Prediction Competition

Predicting PTHrP Result - AACC 2022 Annual Meeting

Presented by the AACC Data Analytics Committee and WashU Pathologynife

24 teams - 4 days ago

Overview Data Code Discussion Leaderboard Rules Join Competition

Your solution
goes here!

Input Output
Laboratory data @) Predicted PTHP result

“The purpose of this competition was to see if a machine-learning
approach could better predict test outcomes compared to the
traditional manual approach that many clinical laboratories use,
reviewing calcium and PTH results to identify potential inappropriate
PTHrP orders, thereby improving the PTHrP test utilization. ”

(https://www.kaggle.com/competitions/aacc-2022-predicting-pthrp-results)
14



Our Workflow of PTHrP Model Development
and Evaluation

f Data Preprocessing \

Data Collection
BUN WBC
-1year PTHP Test ‘ > r’
Patients’ laboratory test results Normalization of test results
» Max, Min, Mean, Latest, and Rate of change for each test
Time { —— o —— \
1330 patients from 2012-2022 I sun / |
Lab test results are provided, from which 1064 for | |
training, 264 for testing Time A
\ - — )

’ Model Evaluation Model Development

—
r } ree Tree

Internal validation i .rce
|
v I I
Vil ( 1

f 1~

sensitivity

f — In-site

o Risk Score
1- specificity l ‘

Yang et al., manuscript under review
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Winner Solution of the Competition

Sensitivity = 0.900
Specificity = 0.842
Precision =0.539

WUSM test set

AUROC = 0.936

—— In-site (AUROC: 0.936) \1)7
0.0 0.2 0.4 0.6 0.8 1.0 ﬁ

1 - specificity

Sensitivity

0.4

0.2

0.0
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Data
Gathering
and Cleaning

processing

NATIONAL ARTIFICIAL INTELLIGENCE
RESEARCH AND DEVELOPMENT
STRATEGIC PLAN
2023 UPDATE

AReport by the

SELECT COMMITTEE ON ARTIFICIAL INTELLIGENCE
of the
NATIONAL SCIENCE AND TECHNOLOGY COUNCIL

May2023

Data Pre-
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Building a
Predictive

Concerns on Healthcare Al

ncorporate thé
Model in
Healthcare

pplication
Model
Evaluation
Lack of
N ¢ trust from

Regulation OV4) the clinicians

of the
government

91% of healthcare insiders see artificial intelligence boosting
access to care, but 75% believe it could threaten the security and
privacy of patient data.

(Stat source: https://hitinfrastructure.com/news/challenges-of-artificial-intelligence-adoption-in-healthcare)
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Essential Issues
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Risk Prediction with EHR
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[ Risk Prediction with EHR
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/l Definition and measurement of algorithmic disparity
B Methods to address algorithmic disparity
B Address disparity across multiple sites

o
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What is Algorithmic Disparity

Algorithmic bias/Algorithmic Disparity
Describes systematic and repeatable errors in a computer system that create
“unfair” outcomes, such as "privileging" one category (group) over another.(From
wikipedia)

B Different from data bias

B Focus on group-based algorithmic disparity in this tutorial

B Group (category) usually refer to gender/race/age in the healthcare problems

20



Algorithmic Disparity in Healthcare

B The algorithm used predicted healthcare
costs rather than illness to calculate the
risk scores and decided whether a patient
should be enrolled in a healthcare
management program

Within patients at the same percentile risk

score (97%), black patients went on to be
far less healthy than white patients
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RESEARCH ARTICLE

Dissecting racial bias in an algorithm used to manage
the health of populations

Ziad Obermeyer'-2", Brian Powers?, Christine Vogeli*, Sendhil Mullainathan’"*
+ See all authors and affiliations
Science 25 Oct 2019:

Vol. 366, Issue 6464, pp. 447-453
DOI: 10.1126/science.aax2342

Percentile of Algorithm Risk Score
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Algorithmic Disparity in Healthcare

B White female pregnant individuals are
more likely to be diagnosed with
postpartum depression and receive mental
health services than black individuals

B Clinical prediction models trained on such
biased data may produce unfair outcomes

Table 2. Selected Characteristics of Pregnant Women Enrolled in Medicaid (2014-2018)

Participants, No. (%)

All White Black Standardized
Characteristic (N =573 634)* (n =314903) (n=217899) difference
Age, mean (SD), y 26.1(5.5) 26.0 (5.4) 26.2(5.5) 0.0
Plan type (HMO vs others) 419483 (73.1) 233649 (74.2) 162338 (74.5) 0.0
Pregnancy outcome
Preterm birth 49024 (8.5) 24055 (7.6) 22051 (10.1) 0.1
Preeclampsia 33297(5.8) 15529 (4.9) 15841 (7.3) 0.1
Cesarean delivery 167 834 (29.3) 90554 (28.8) 66793 (30.7) 0.0
High-risk pregnancy flag 193437 (33.7) 106896 (33.9) 74935 (34.4) 0.0

Postpartum period

Postpartum depression® 821(12.3) 52370 (16.6) 15410 (7.1)E/’

Any mental health related visits 48781 (8.5) 34044 (10.8) 12612 (5.8) 0.2
HEDIS-qualifying visits 192427 (33.5) 107 965 (34.3) 70216 (32.2) 0.0

22

ook Open.

Original Investigation | Health Informatics
Comparison of Methods to Reduce Bias From Clinical Prediction Models
of Postpartum Depression

Yoonyoung Park, ScD; Jianying Hu, PhD; Moninder Singh, PhD:; Issa Sylla, BA; Irene Dankwa-Mullan, MD, MPH; Eileen Koski, MPhil; Amar K. Das, MD, PhD

The Propotion of Patients With
Predicted High Risk of Postpartum

Depression
0.2
0.152
0.15
0.1
0.05 0.026
0 .
Black White



Define and Measure Disparity

Notation Definition Example
A€ {0,1} Protected/sensitive attribute, a Race(white, non-white)
grouping variable with respect to which
we wish to guarantee fairness
X Features, all variables except A which Other demographic information, lab tests, etc
are inputs of the model
Y € {0,1} True label Diagnosed as postpartum depression
S Predicted score, indicating the A predicted score indicating risk of postpartum
predicted probabilityof Y = 1 depression
Y € {0,1} Predicted label Y = 1: Predicted high risk of postpartum depression

23




Define and Measure Disparity

Demographic Parity (Statistical Parity)
B Formulation

P(Y=1A=1)=P(Y =1/4=0)
B Disparity

Equalized Opportunity

B Formulation
P(Y=14=1)=P(f =1|4=0)

B Disparity

Aoy = [P(7 = 1] = 1) — P(7 = 1]4 = 0)] Bon =IP(7 =1]a=1Y = 1) ~P(? = 1|4 =0, = 1)

B Equalized averaged predictions W Equalized true positive rates

Risk 4 Group A=1 Group A=0 Risk4 Group A=1 Group A=0

& @ o

e LY

@ ¢ .. [}
Y=1: color dots ® . ° o
@

&)
®

& e

App=14/8 -2/8|=0.25

Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. "Fairness through awareness." In Proceedings of the 3rd innovations in
theoretical computer science conference, pp. 214-226. 2012.

Aop=19/12 -2/41=0.33

Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of opportunity in
supervised learning." Advances in neural information processing systems 29

24 (2016).



How to Address Disparity

Fairness through Unawareness [ Set different prediction ]

. . thresholds
B The protected attribute is not

explicitly used in the model

[ Add fairness constraints ]

B Many variables in the data are proxies | | i
for the protected attribute (zip code- v A Y

race) LT a > a > a * O
Gather and Train and Make
. . . pre-process Build model evaluate Deploy model redictions
Fair Learning Algorithms data model P

B Pre-process
B In-process
B Post-process

25



Learning Fair Representation

B Learn a fair encoder which maintains
useful information in X to predict Y
and hides the sensitive attributes

Classifier Adversary
9(2) h(Z)
Encoder Decoder
f(X) k(Z, A)

minimize max}Lmize Ex,y,a[L(f, g,h, k)],

f.a.k

L(fa 8, h, k) = 0Lclass + ﬁﬁoec = ’YEAdv

on Machine Learning, pp. 3384-3393. PMLR, 2018.

26

B Tradeoffs between accuracy and
various fairness metrics yielded by
different LAFTR loss functions

0.85

0.84

0.83

Accuracy

0.82

0.81

0.80

s LAFTR-DP
“+ LAFTR-EO
“++ LAFTR-EOpp
++ DP-CE
W MLP-Unfair

0.8507 «=er

0.848
0.846
[
© 0.844
3
] 0.842
<0
0.840

0.025 0.050 0.075 0.100 0.125 0.150 0.175

DpP

LAFTR-DP
-+ LAFTREO
s | AFTR-EOpp
M MLP-Unfair

08381 ..

0.836

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

AEop
Madras, David, Elliot Creager, Toniann Pitassi, and Richard Zemel. "Learning adversarially fair and transferable representations." In International Conference




Post-Processing Risk Scores

B Foragiven threshold 8, the prediction is
decided by the predicted score:y = 1[5 > 6]
B Original disparity:
5 8
App =|=—2| =023
B Set different thresholds for different
groups
B Disparity after adjustment:
8 8
App = |35 = 35| =
B Advantage: model-agnostic

Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of opportunity in supervised learning." Advances in neural information processing systems 29 (2016).

Figure Source: https://data102.org/sp20/assets/notes/notes05.pdf
27
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Applications in Healthcare

B Numerous works have been published
to evaluate and mitigate the algorithmic
disparity in healthcare applications

B Build risk prediction model and consider
the algorithmic disparity with data from
single site

B Problem: the amount of healthcare data

from single site may be not enough to
train a good model

Author (year)

Clinical objective How was faimess Was racial bias  Fow was the AI® model  Was racial bias  Protected class
evaluated? identified? biased? mitigated?
Abubakaretal  Identification of im-  Accuracy Yes Poor accuracy of models  Yes Dark-skinned pa-
(2020) [29] ages of burns vs trained on a Caucasian tients, light-
healthy skin data set and validated on skinned patients
an African data set and
vice versa
Allen et al Intensive care unit  Equal opportunity dif- N/A¢ N/A Yes Non-White pa-
(2020) [30] ACU) mortality predic-  ference (FNRP dispar- tients
tion ity)
Briggs and Prediction of future  Balanced accuracy, ~ N/A N/A Yes Black patients
Hollmén (2020) health care expendi-  statistical parity, dis-
1311 tures of individual pa- parate impact, average
tients odds, equal opportuni-
ty
Burlinaetal  Diagnosis of diabetic Accuracy Yes Lower diagnostic accura-  Yes Dark-skinned pa-
(2021) [32] retinopathy from fun- cy in darker-skinned i tients
dus photography viduals compared to
lighter-skinned individu-
als
Chen et al ICU mortality predic- Error rate (0-1loss) ~ Yes Differences in error rates No Non-White pa-
(2019) [33] tion, psychiatric read- inICU mortality between tients
mission prediction racial groups
Gianattasioetal Dementia status classi-  Sensitivity, specifici-  Yes Existing algorithms. Yes Hispanic, non-His-
(2020) [34] fication ty, accuracy varying in sensitivity and panic Black pa-
specificity between tients
race/ethnicity groups
Noseworthy et~ Prediction of left ven-  AyuRoCd No N/A No Non-White pa-
al (2020) [35]  tricular ejection frac- tients
tion 35% from the
electrocardiogram
(ECG)
Obermeyeretal Prediction of future  Calibration Yes Black patients with a Yes Black patients
(2019) [36] health care expendi- higher burden than White
tures of individual pa- patients at the same algo-
tients rithmic risk score
Park et al Prediction of postpar- Disparate impact, Yes Black women with a Yes Black patients
(2021) [37] tum depression and  equal opportunity dif- worse health status than
postpartum mental  ference (TPR® dispari- White women at the
health service utiliza- 1y same predicted risk level
tion
Seyyed-Kalan-  Diagnostic label pre-  Equal opportunity dif-  Yes Greater TPR disparity in  No Non-White pa-
tari et al (2021)  diction from chest X- ference (TPR dispari- Hispanic patients tients
381 rays ty)
Thompson et al of opi-  Equal ity dif-  Yes Greater FNR in the Black  Yes Black patients
(2021) [39] oid misuse from clini- ference (FNR dispari- subgroup than in the
cal notes ty) White subgroup
Wissel et al of surgi- dysisof No N/A No Non-White pa-

(2019) [40]

cal candidacy score
for patients with
epilepsy using clinical
notes

the impact of the race
variable on the candi-
dacy score

tients

Huang, Jonathan, Galal Galal, Mozziyar Etemadi, and Mahesh Vaidyanathan. "Evaluation and mitigation of racial bias in clinical machine learning models:

scoping review." JMIR Medical Informatics 10, no. 5 (2022): e36388.
28



Address Disparity in Multiple Sites

B Training a global model across multiple sites (e.g., hospitals)

M A global standard on disparity that each site should satisfy simultaneously
with the global model

M |t is challenging to achieve this due to the distribution shift across sites

m Disparity < 0.05
e

il

:
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Address Disparity in Multiple Sites

M Intensive Care Unit data from 11 hospitals
B Fairness: demographic parity (Y: Length of Stay > 1 week, A: Race)
B With existing methods, the disparities on some clients are still very high

Disparity < 0.05 ”] @ 11 clients, min acc: 0.609

=)
o)

o
5557 ()
o
&

to

(]
(X T 6 °®
+ |
0.00 0.05 0.10

Disparity

=)
o)
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Restrict Disparity for Each Site

Goal

B Address algorithmic disparities in
multiple sites

u;: utility on site i
gi: disparity on site i

Cui, Sen, Weishen Pan, Jian Liang, Changshui Zhang, and Fei Wang. "Addressing algorithmic disparity and performance inconsistency in federated
learning." Advances in Neural Information Processing Systems 34 (2021): 26091-26102.
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Restrict Disparity for Each Site

Goal

B Address algorithmic disparities in
multiple sites

Subgoals

B (Fairness) All sites achieve fairness Q @

gi < &) Vi max min {uy, us, ..., Uy,

s.t. max{g; —€1,...,gv —€x} <0

B (Utility) Maximize the minimal

utility across all sites u;: utility on site i

max min{ul, ey uN} gi: disparity on site i

€;: fairn n site i
ini;_tl Imaz (h) i ess budge on site
€

lmaz(h) = max (I;(h)) i€ {l,.,N}
St Gmas(h) <0
Ghas(h) = max (gi(h)) = max (g;(h) —€¢;) i€ {1,.,N}

Cui, Sen, Weishen Pan, Jian Liang, Changshui Zhang, and Fei Wang. "Addressing algorithmic disparity and performance inconsistency in federated
learning." Advances in Neural Information Processing Systems 34 (2021): 26091-26102.
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Fairness Results on All Hospitals

B Satisfy fairness constraints on all hospitals
B Feasible under different levels of fairness constraints

0.9 MMPF 0.9 FA 0.9 Fedave+Fair 0.9 ours withe =0.1 0.9 ours with £ =0.05
: ® 11 clients, min acc: 0,614 . ® 11 clients, min acc: 0.601 . ® 11 clients, min acc: 0.609 ® 11 clients, min acc: 0,62 : ® 11 clients, min acc: 0,616
| 1
.08 .08 ° ° o8 08 o ' .08 H
2 o ° o L] L] 1 o [ ]
g g g . . . g e
Zorf * Zo7{ * ¢ o Z07{ o 0.7 o o P £07] o® o4l
< ¢ . < <7 e o o ‘ ° ! Z 1
o, o0 Y 1 1
o e . . * .
* o o o L e
0.6 0.6 . 0.6 0.6 1 0.6 1
1 1
0.00 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10 0.00 0.05 0.10
Disparity Disparity Disparity Disparity Disparity

Cui, Sen, Weishen Pan, Jian Liang, Changshui Zhang, and Fei Wang. "Addressing algorithmic disparity and performance inconsistency in federated
learning." Advances in Neural Information Processing Systems 34 (2021): 26091-26102.
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Takeaways

Risk prediction models applied to healthcare are faced with algorithmic
disparity

The method to address algorithmic disparity should balance the fairness-
utility trade-off

It is also important to consider algorithmic disparity on multiple sites
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[ Risk Prediction with EHR
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/l The need of explanation in healthcare risk prediction
B Methods on explainable machine learning

* Learn directly interpretable model

* Post-hoc explanation
B Explanations of prediction in healthcare applications

o

\
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Need of Explanation

5
Patient

readmission risk  Reason for risk

Patient medical record

Consider when
deciding on
care program

Doctor

Generate risk prediction
algorithm by patient

Expenses

Predicted risk

-1 (I CD
’ ’
Prescriptiony Days
amount A hospitalized A
, etc.) N
Extracted factors

Medical guideline

Admission &
medical records

Prescription
amount

(Source: https://www.hitachi.us/press/partners-connected-health-and-hitachi-develop-an-explainable-ai-technology-to-help-doctors-predict-
readmissions-and-improve-patient-outcomes)
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Explainable Machine Learning Methods

Directly interpretable vs. Posthocinterpretation

The oldest Al techniques—such as decisionrule Startswith a black box model and probesinto it
sets, decision trees, and decision tables—can with a companion model to create interpretations.
be simple enough for people to understand. The black box model continues to provide the
Supervised learning of these models is directly actual prediction while interpretation improves
interpretable. human interactions.

Hind, Michael. "Explaining explainable Al." XRDS: Crossroads, The ACM Magazine for Students 25.3 (2019): 16-19.
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Learn Directly Interpretable Model

Rule Based Models

]
L e o [ ] L 1 J
000 0 & 0 000000 0 00000000
00000000000000 0000000 [ ]

Rules for Length of Stay
Prediction
IF age > 55 AND gender = male
AND condition = ‘COPD’ AND
complication = ‘YES’
THEN
Length of stay = long (> 7 days)

Relative Variable Importance

Top 5 Variables for Length of
Stay Prediction

Variable Importance
Age 0.45
Gender 0.37
Diabetic 0.32
Race 0.21
Smoker 0.14
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Case Based Models

Example cases for Length of Stay
Prediction

Patient X is predicted to have a

length of stay of 20 days because

he is most similar to these 5

patients who on average had

length of stay of 5 days

(Source: Tutorial on KDD2018: Explainable Al in Healthcare)



LIME (Local Interpretable Model-agnostic Explanations)

B Explains the predictions of any model I
f by approximating it locally with a . +
linear model - '+/ ’
. é O
B For agiven sample @, samples -4
instances around @, gets their ®
predictions using f, and weighs them +H ° o -
by the similarity to the instance being / ° |
explained (represented by size) " .
B The dashed line is the explanation ] -

learned locally

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
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Stabilized LIME

B LIME has been shown to exhibit large

. . : Run?2 of LIME
instability across different samples, T

. Qe
which harms user trust WOrst perimeter

0.03

worst radius
003

worst texture
0.01

worst concave points
0.01

B Stabilized LIME: Automatically and
adaptively determine the number of
perturbations needed to guarantee a
stable explanation

B Results on Breast Cancer dataset

* The explanations by stabilized
LIME are more stable than LIME
across different runs

worst concave points mean radius
0.01 001

Zhou, Zhengze, Giles Hooker, and Fei Wang. "S-lime: Stabilized-lime for model explanation." Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining. 2021.
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SHAP (SHapley Additive exPlanations)

B Game theoretic method to calculate feature contributions to the prediction
B Each feature is a player in a game where the prediction is the payout

B The Shapley value - a method from coalitional game theory to attribute the
payout among the players

$i= ) ISIIE] ;l,sl Lk [fsugiy(@sugy) — fs(xs)]
SCF\{i} L
X={age =55, smoke = yes}, f(X)=0.75
(f(X): risk of long-term mortality) Permutation Marginal for age = 55
(D) =E[f(x)]= 0.2
fl{smoke = yes}) = 0.4 ? fl{age = 55}) - fi{®}) = 0.5-0.2=0.3
f({age =55})=0.5 {smoke = yes} f({age = 55, smoke = yes}) - f({smoke = yes}) =
f({age = 55, smoke = yes}) =0.75 0.75-0.4=0.35
bage (0.35+0.3)/2=0.325

Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Advances in neural information processing systems 30 (2017).
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Predict RT-PCR Test with Routine Lab Tests

ﬁ
f rRT-PCR te} wac [ Gradient BoostirQ
Neutrophil | | Decision Tree

-2 day

(=R 5, o, T,

\ / Time y : : \ \

Routine laboratory test -Dimer e &
k outine faboratory tests ) LDH ] \ o ue )y Infection risk
Data collection Feature construction Classification

Fig. 2. lllustration of the modeling pipeline. Routine laboratory testing results completed within 2 days prior to the release of
RT-PCR results were used to construct a vector, upon which a classifier was built to predict the RT-PCR positive or negative result.
Each dimension of the vector corresponds to a specific laboratory test, and its value corresponds to the average of all results of
this laboratory test taken during the collection window. The model outputs a probability score ranging from 0-1, indicating the
risk of SARS-CoV-2 infection.

Yang, He S., Yu Hou, Ljiljana V. Vasovic, Peter AD Steel, Amy Chadburn, Sabrina E. Racine-Brzostek, Priya Velu et al. "Routine laboratory blood tests predict
SARS-CoV-2 infection using machine learning." Clinical chemistry 66, no. 11 (2020): 1396-1404.
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Shapley Values of COVID Infection Prediction

f{DH=E[f(x)] flx)

f) = fo+ ) oy

Higher .—"] Lower

(b)

o)) ) ) ) ) ) ) ) ) )

> 1 > ° B 3 > 1 o
4> Lo o 1 = _® a? o 0

9 o 4 p g
W o C
o o «® o o
% <

Yang, He S., Yu Hou, Ljiljana V. Vasovic, Peter AD Steel, Amy Chadburn, Sabrina E. Racine-Brzostek, Priya Velu et al. "Routine laboratory blood tests predict
SARS-CoV-2 infection using machine learning." Clinical chemistry 66, no. 11 (2020): 1396-1404.
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Shapley Flow

B Original SHAP assumed the features to

be independent, while the features @ @ @ @

may follow a causal structure in real-
world problems
B Shapley Flow: A graph-based
approach to explain model prediction
by attributing the prediction to the

edges on the graph X
X5
X3 0.6
X, 0.4

| BRI |
Attribution value

Wang, Jiaxuan, Jenna Wiens, and Scott Lundberg. "Shapley flow: A graph-based approach to interpreting model predictions." In International Conference on
Artificial Intelligence and Statistics, pp. 721-729. PMLR, 2021.
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Shapley Flow

B Dataset based on National Health and Nutrition Examination Survey
B Explain the risk of death over 15-yr followup for a given individual

Attributions Independent

Age . o Blood protein

Serum Magnesium 0.02 |

Serum Protein _

Blood pressure 0.0

Systolic BP -0.05

Diastolic BP -0.04

Serum Cholesterol 0.0

Serum Albumin 0.0

Blood protein 0.0
White blood cells 0.0

Race 0.0

BMI -0.0

TIBC 0.0

TS 0.0

Pulse pressure 0.0

Poverty index 0.0 0.09
Red blood cells 0.0

Serum Iron 0.0

Sedimentation rate 0.0 @
Iron 0.0

Inflamation 0.0

Wang, Jiaxuan, Jenna Wiens, and Scott Lundberg. "Shapley flow: A graph-based approach to interpreting model predictions." In International Conference on
Artificial Intelligence and Statistics, pp. 721-729. PMLR, 2021.
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FACTS (Fairness-Aware Causal paTh decompoSition)

Specifically target at explaining the disparity
B Provide more comprehensive explanation of
disparity

B Highlighted in AMIA (American Medical

Informatics Association) 2021 Year-in-
Review Session

Feature-based explanations on disparity Path-based explanations
Features ISV s
Poverty Idx, Food Program (y1) O [H003180 A-n—Y
< A= 5
AN S A y 0.0081
— y3 —
Serum magnesium (y3) 0.0076 X3 . -
: A—>ys—Y 0.0077
Blood protein (y4) 0.0064 .
: & A—> ys - Y 0.0060
Sedimentation rate (ys) 0.0099 T o 37 00031
. 1 5 :
White blood cells, Red blood cells () [IE010072% L 2

Pan, Weishen, Sen Cui, Jiang Bian, Changshui Zhang, and Fei Wang. "Explaining algorithmic fairness through fairness-aware causal path decomposition."
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1287-1297. 2021.
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Takeaways

B Explanability is essential for clinicians/patients to trust prediction of
machine learning model in healthcare Al

B Post-hoc explanations (e.g., Shapeley values) are model-agonistic and
more applicable

B Taking the causal structure between the features into consideration could
make the explanations more comprehensive
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[ Risk Prediction with EHR
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B The need to apply a model to external sites
B Factors that affect model generalizability
B Strategies to improve model generalizability

\
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Apply the Champion Model to External Sites

Ohio State University Wexner Medical Center (OSU)

Data under analysis
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University of Texas M.D. Anderson Cancer Center (MDA)
1090 PTHrP orders from 2021-2022
PTHrP positive rate 23.9%
Send-out lab: Mayo Clinic Laboratories
49

Weill Cornell Medicine (WCM):
1101 PTHrP orders from 2017
to 2022

PTHrP positive rate 16.9%
Send-out lab: Quest
Diagnostics

Washington University School of
Medicine in St. Louis (WUSM)

1330 PTHrP orders from 2012 to 2022
Positive rate 17.5%

Send-out lab: Mayo Clinic Laboratories




Factors that Affect Model Generalizability

Patient demographic characteristics

Geographic features

Instrument platforms

Sample handling protocols and other pre-analytical factors
Testing methodologies

Send-out laboratories
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Directly Applying the PTHrP Model

B When the ready-made model from WUSM was directly applied “as-is” to
the two independent datasets, its performance moderately deteriorated
in MDA but substantially deteriorated in WCM

(Yang, Sarina, Pan, Weishen, et.al. manuscript under review)
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Strategies to Improve Model Performance

Strategy 1: Re-training the XGBoost model using site-specific data with the
same model architecture, feature sets, and hyperparameters

Strategy 2: Re-building the model using site-specific data including feature
selection, hyperparameter tuning and model parameter learning

When a ready-made model cannot be directly transported to external datasets due to the shift of data distribution,
some local customization strategies can be utilized to improve model performance, such as re-training or re-
bUiIding the model usmg site-specific data. (Yang, Sarina, Pan, Weishen, et.al. manuscript under review)
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What If a Hospital Has Limited Data to Re-
Train the Model?

B Explored a model fine-tuning strategy
in which the ready-made model is
applied to hospitals with limited
training data (low-resource scenarios)

B The fine-tuning strategy performed
best when the amounts of available
samples were relatively small (< 200).
However, when the number of
available samples exceeded 200,
model re-training appeared to be a
better option

(Yang, Sarina, Pan, Weishen, et.al. manuscript under review)
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Takeaways

M |t is essential to evaluate model generalizability in independent, external
datasets.

B Directly transporting a ready-made model to external datasets may lead to
performance deterioration due to data distribution shift. Model re-
training or re-building could improve the performance when there are
enough local data, whereas model fine-tuning may be a favorable strategy
when site-specific data is limited.

Finlayson, Samuel G., Adarsh Subbaswamy, Karandeep Singh, John Bowers, Annabel Kupke, Jonathan Zittrain, Isaac S. Kohane, and Suchi
Saria. "The clinician and dataset shift in artificial intelligence." New England Journal of Medicine 385, no. 3 (2021): 283-286.
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Risk Prediction with EHR
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Risk Prediction with EHR

Q Risk Scores

Ranking Patients for Resource Allocation
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Disparity when Ranking by Risk Scores

B Allocating limited medical resources
B Ranking the people based on the risk score
B Ranking disparity !

(X (X} [0 (X} ') (-~ AN Y & JPREN %
= = ~ ~ = 7 € “ &= % 7 % 7 )
> 4
{\ )
Ve

0.27 0.35 0.40 0.50 0.53 0.60 0.65 0.70 0.87 0.94

& Y=0 A=a
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Measuring Ranking Disparity

B AUC s calculated as the probability that a randomly drawn predicted score from the
positive class (S) is higher than a predicted score from the negative class (Sp) :

AUC = Pr[S] > So] AUC: & vs &3
B The xAUC of group a over b (Kallus et.al. 2019):

a b (X S
xAUC(a,0) = Pr[S7 > 5] yauc@b)y: ¥ w ©
« S predicted score from the positive class in group a

A

. S(l,’: predicted score from the negative class in group b

" (X ] (X (X ] (X (= ~) [ =) (X (- =) (- ~)
N 4 v 4 w 4 w 4
S S R S L . 4 [

0.27 0.35 0.40 0.50 0.53 0.60 0.65 0.70 0.87 0.94

Kallus, Nathan, and Angela Zhou. "The fairness of risk scores beyond classification: Bipartite ranking and the xauc metric." Advances in neural
information processing systems 32 (2019).
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Measuring Ranking Disparity
B The xAUC of group a over b:
xAUC(a,b) = Pr [S] > S{]
B Ranking Disparity:

AxAUC(a,b) = [xAUC(a, b) — xAUC(b, a)]
— ‘Pr [sg > sg] Py [s‘; > sg}

How to address
such disparity?

" (X ] (X (X ] (X [~ ~ -~ (X) -~ [~ ~
o B | Y ¥ 1

~ N N | N ()

™ -

NVs

0.27 0.35 0.40 0.50 0.53 0.60 0.65 0.70 0.87 0.94

Kallus, Nathan, and Angela Zhou. "The fairness of risk scores beyond classification: Bipartite ranking and the xauc metric." Advances in neural
information processing systems 32 (2019).
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Post-hoc Ranking Adjustment

B Optimize the ordering directly

<> group b
original rankings ‘ . ‘ . ‘ . ‘ . . Q group a

predicted ranking score 0.94 087 ~-0.80_ 075~ 0.7 0.6 0.50

label 0
OO ROGO O

label 1
B p%: samplesin group a sorted by predicted scores

B pP:samples in group b sorted by predicted scores
B Change cross-group ordering while keeping the inner-group ordering fixed (xOrder)

B Find the optimal ordering operation o while considering the fairness-utility trade-off
explicitly

utility fairness

L(o(p®,p")) =AUC(o(p", ")} — A -IAXAUC(0(p", p))!

Cui, Sen, Weishen Pan, Changshui Zhang, and Fei Wang. "Towards model-agnostic post-hoc adjustment for balancing ranking fairness and algorithm utility."
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 207-217. 2021.
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Post-hoc Ranking Adjustment

utility fairness
ity X o S e lvg i oo
£(o(p",p")) =IAUC(o(p". ")} — A HAXAUC(o(p", 1))}
B Solve the through a dynamic L N N R
programming process g . . . — 0" (pC4), ph2)
. o _ o* a,(:l’))7 b(:3)
B The efficiency of the proposed o ! > e
. b(1) -r
method can be proved theoretically ” !
pb<2) L -Tr '>| pa(:4‘)7'pb(:2)
| ——
) v— _ o* (pa(:4)
b3 pa(prcj‘)\ ph(3)) }l
PPy o) e

O*(pa(:3)’ b(:3) )®pa(4)
0*(pa(:4)7pb(:3)) _ Zf G( ( a(3 )@pa(4 ) > G(O ( a<4 2>)@p 3>)
o (pa(:4)’ b 2))@ pb(d), otherwise

Cui, Sen, Weishen Pan, Changshui Zhang, and Fei Wang. "Towards model-agnostic post-hoc adjustment for balancing ranking fairness and algorithm utility."
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 207-217. 2021.
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Better Trade-off between Ranking Disparity and Ulility

B xOrder always achieves low disparities
B xOrder obtains better utility-fairness trade-offs than baselines

elCU, Prolonged LOS-Ethnity

MIMIC, Mortality-Gender MIMIC, Prolonged LOS-Ethnity

0.84{ —=-""0 — . 0.636
0.795 A :
0.83 - / 0.635 - ‘
O Q /'/ 0 _. —— xOrder
=) ] =) | Lo e =) -
< 0.82 v < 0.790 / b : ® Unadjusted
/ ./' : V  Post-logit
0.81 - / 2 e Corr-reg
/ 0.785 - / —-= Opti-tfco
0.02 0.04 0.06 0.02 0.03 0.04 0.02 0.04 0.06 0.08
AxAUC(a,b) AxAUC(a,b) AxAUC(a,b)

upper-left corner
is preferred
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