
KDD 2023 Tutorial – LS09
Mining Electronic Health Records for 

Real-World Evidence

Tuesday, August 8th,10:00 am-13:00 pm PDT, Room 202A
Chengxi Zang, PhD, Weishen Pan, PhD, & Fei Wang, PhD

Department of Population Health Sciences
Institute of Artificial Intelligence for Digital Health (AIDH)

Weill Cornell Medicine, Cornell University
www.calvinzang.com/ehr4rwe_kdd2023.html

1

http://www.calvinzang.com/ehr4rwe_kdd2023.html


• Generating Real-World Evidence for Understanding 
Long COVID

• Advancements in Risk Prediction using EHRs

• Discussion & QA
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Part-1: Generating Real-World Evidence for 
Understanding Long COVID

Tuesday, August 8th,10:00 am-13:00 pm PDT, Room 202A
Chengxi Zang, PhD, Weishen Pan, PhD, & Fei Wang, PhD

Instructor @ Department of Population Health Sciences
Institute of Artificial Intelligence for Digital Health (AIDH)

Weill Cornell Medicine, Cornell University
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chz4001@med.cornell.edu
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@calvin_zcx
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Long COVID


Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.
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nytimes

https://www.nytimes.com/interactive/2022/02/19/science/long-covid-causes.html
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Leveraging EHR/RWD to Understand 
Long COVID

15B+ rows of data 
• Electronic health 

records 
• structured 
• unstructured

• Public payor data
• Exposome data

• race/ethnicity
• socio-economic
• environmental 

• Vaccine data

●PCORnet Sites (n=65)
●RECOVER Data Enriched Sites (n=41 sites)



Geographic, 
demographic, 

socioeconomic 
disparities,

Examine risk factors

Characterize 
treatments and 

patterns of 
therapeutic use,

Therapeutic 
effectiveness

Vaccination linkage 
and quality 

improvement
Vaccine effectiveness

Predict Treat Prevent

Leveraging EHR/RWD to 
Understand Long COVID

Define & Detect
Phenotype development, refinement, validation, Characterize PASC

Epidemiology 
& Health 
Services 
Research

Machine 
Learning & 

Artificial 
Intelligence

Queries

PCORnet Adult 
Research
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Outline
1. Backgrounds

2. Key Concepts & Causal Basics 

• RCT, RWD/E, Trial Emulation, Causal Inference, etc.

3. Applications & Beyond

4. Conclusions
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Randomized Controlled Trials 
(RCTs)

• RCT is the gold standard for generating evidence, or answering causal questions, for medical decision-making, 

• Causal questions: What is the effect of exposure/treatment T on the outcome Y?  Clinical/public health 
decisions

• However:

• Unethical – Smoking causes lung cancer? Post-acute sequelae of SARS-CoV-2 (Long COVID)? Where did that 
evidence come from?

• $$$ -- 12 million for conducting an RCT on average in drug development

• Untimely -- Studying long-term outcomes takes a long time. E.g., AD progression, long-term post-market 
efficacy, safety, and adverse events 



Real-World Data (RWD)
Real-World Evidence (RWE)

FDA 2023
B Swift, CTS 201816

• Real-World Data (RWD)
• Data relating to patient 

health status and/or the 
delivery of health care 
routinely collected from a 
variety of sources (patient-
level data not collected in 
conventional RCTs)

• E.g., EHR, Claims, etc.

• Real-World Evidence 
(RWE)

• the clinical evidence 
derived from the analysis 
of RWD

https://ascpt.onlinelibrary.wiley.com/doi/full/10.1111/cts.12559
https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence
https://ascpt.onlinelibrary.wiley.com/doi/full/10.1111/cts.12559


Why Generate RWE using RWD?

• RCT is the gold standard for evidence generation in 
medical decision-making, however,

• Unethical – Smoking causes lung cancer? Post-
acute sequelae of SARS-CoV-2 (Long COVID)? 
Where did that evidence come from?

• $$$ -- 12 million for conducting an RCT in average

• Untimely -- Studying long-term outcomes takes a 
long time. E.g. AD progression, long-term post-
market efficacy, safety and adverse events 

• RWD/RWE  to complement the knowledge gained 

from traditional clinical trials

• Observational data, Ethical

• Timely and long-term

• Big patient data, generalizability

• Increase throughput vs. case by case

• Rare outcomes

• Challenges: Observational study  Quality, Non-

randomized, all kinds of biases, missing, censoring, 
longitudinal, data complexity, etc.

17



RCTs using RWD

RWD is used to assess enrollment criteria, 
trial feasibility, recruitment, selection of 
sites, outcome identification, conduct RCT

Externally controlled trial
Single-group trial with external control 
group derived from RWD

Observational Study
Cohort study, case-control study, case-
crossover study, etc.
Define disease, incidence/prevalence, 
surveillance, risk factors, burden, etc.
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Trial emulation
Drug RWE (e.g., effectiveness in the 
long term, general population, e.g., covid 
vaccine), drug repurposing, comparative 
effectiveness, Post-market safety, 
effectiveness monitoring

Why generate RWE using RWD?

Adapted from NEJM 386.18 (2022): 1680-1682.

https://www.nejm.org/doi/10.1056/NEJMp2200089?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed


Real World Data Real World Evidence 

How to generate RWE using RWD? 



How to generate RWE using RWD? 
Trial Emulation 

• Bridging RWD and RWE (causal answers)

• Dr. Miguel Hernan’s Idea: 

• Any causal question can be answered by a randomized 
trial. 

• Impossible because some RCTs are expensive, 
Untimely, Unethical, impractical. 

• However, we can do a thought experiment: imagine a 
hypothetical randomized trial that we would prefer to 
conduct and analyze, namely, the target trial  emulate 
this (hypothetical) randomized trial based on RWD

Hernán, M. A., & Robins, J. M. (2016). Using big data to emulate a target trial when a randomized 
trial is not available. American journal of epidemiology, 183(8), 758-764.
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• Step 1: Ask the right causal question(s) 

• Will SARS-CoV-2 infection T lead to incident condition Y in 
their post-acute period?

• Step 2: Answer that causal question

• Experiment/Trial design (e.g., 
https://clinicaltrials.gov/ct2/show/study/NCT04510194 )

• Emulating trial with RWD (Informatics, relevant data sources, 
feature engineering/ define & validate study variables, 
faithfully emulated)

• Causal inference (in lieu of randomization)

Hernán, M. A., & Robins, J. M. (2016). Using big data to emulate a target trial when a randomized 
trial is not available. American journal of epidemiology, 183(8), 758-764.

21

How to generate RWE using RWD? 
Decompose Trial Emulation 

https://clinicaltrials.gov/ct2/show/study/NCT04510194


Experiment Design: Protocol of a (hypothetical) 
target trial

Causal questions Will a SARS-CoV-2 infection (T) lead to incident condition Y (unknown) in their post-acute period?

Eligibility criteria Adult patients (≥ 20) without lab-confirmed SARS-CoV-2 infection and no history of condition Y in the 
last 3 years

Exposure strategies •Exposure group: Infection of SARS-CoV-2 and the SARS-CoV-2 PCR/Antigen tested positive 
•Control group: No infection of SARS-CoV-2, and the SARS-CoV-2 PCR/Antigen tests kept negative

Assignment Individuals are randomly assigned to an exposure strategy at baseline and are aware of the assigned 
exposure strategy.

Follow-up We followed each patient from his/her infection until the day of the outcome of interest, death, 180 days 
after baseline, whichever happens first.

Outcomes Newly-onset post-acute sequelae of COVID-19 (Y). 

Causal contrasts The PASC outcomes were ascertained from day 30 after the SARS-CoV-2 infection and all the causal 
contrast measures were computed 180 days after the SARS-CoV-2 infection against control group.

Data analysis Cumulative incidence, excess burden, adjusted hazard ratio, subgroup analyses, sensitivity analysis

COVID infection onset

Baseline period
(Confounder collection)

Post-acute period
(Impact evaluation)

PASC

Acute 
Period

COVID Negative

Baseline period
(Confounder collection)

Post-acute period
(Impact evaluation)

Acute 
Period

30 d +180 d-3 y -7 d 𝑇𝑇0

Exposed 
group

Comparison 
group



Wait! What is Y? 

23

• Goal is to study: how T (covid infection) leads to Y 
(Long COVID) 

• What are Ys?

• Build an exhaustive list of all potential PASC 
conditions

• Trial emulation for each Ys

• Prioritize most likely a set of Ys to characterize 
PASC



Screening List of dx and meds

24

CLINICAL CLASSIFICATIONS SOFTWARE REFINED (CCSR) FOR 
ICD-10-CM DIAGNOSES, v2022.1 with 73,371 ICD-10-CM 

does, 530 categories selected by the clinician group 
6,000+ ICD-10-CM codes with 137 categories for adults

459 top prevalent medications at 
rxNorm at ingredient  level from 

INSIGHT & OneFlorida+



Increase Throughput
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𝑌𝑌1

𝑌𝑌2

𝑌𝑌596

137+459 = 596 trials
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Wait! Random exposure assignment?
Adjust Analysis/Causal Inference

• Data (𝐗𝐗,𝐓𝐓,𝐘𝐘): 𝑋𝑋: baseline covariates; 𝑇𝑇 ∈ {0, 1}
treatment/exposure assignment; 𝑌𝑌: outcome

X

T Y
Condition YExposure T

𝑋𝑋 Confounding factor, e.g., baseline conditions, age, 
gender, race, BMI, social-eco status, index period, etc.



• Exposure groups were exchangeable by adjusting for baseline 
covariates.

• Data (𝑋𝑋,𝑇𝑇,𝑌𝑌), 𝑋𝑋: baseline covariates including: basic demographics age, race, 
gender, medications, diagnoses, SDOH etc.; 𝑇𝑇 ∈ {0, 1} treatment assignment; 𝑌𝑌: 
outcome

• Identifying Assumptions: conditional exchangeability, positivity, consistency, 
non-interference

• Propensity Score (PS) P T = 1 X : “the conditional probability of 
assignment to a particular treatment given a vector of observed covariates.”

• Inverse Probability of Treatment Weight (IPTW) as sample weights for 
adjustment

• PTW 𝑤𝑤 = 𝑇𝑇
𝑃𝑃

+ 1−𝑇𝑇
1−𝑃𝑃

 Stabilized-IPTW w = 𝑇𝑇∗P(T=1)
𝑃𝑃

+ 1−𝑇𝑇 ∗P(T=0)
1−𝑃𝑃

clipped 0.01,0.99 quantiles
• Patients re-weighted by 𝑤𝑤  a pseudo-Randomized Controlled Trial
• Adjusted outcome, e.g., hazard ratio, excess burden, etc.

• Balance diagnostics: Standardized Mean Difference
• AI/ML/DL:

• Learning PS is a binary classification problem
• 𝑃𝑃Θ ∶ 𝑋𝑋 → 𝑇𝑇 with learnable parameter Θ
• Naïve idea: Can we propose more powerful/complex/deep 𝑃𝑃Θ ?

Causal Inference with PS

27



Outline
1. Background

2. Key Concepts & Causal Basics 

3. Applications & Beyond

• To Characterize Long COVID in terms of individual and clustered 

conditions

4. Conclusions
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To define Long COVID through Data-
driven High-throughput Analysis 



• Characterize Long COVID through increased risk of new EHR diagnoses and medications in 
a SARS-CoV-2 patients compared with controls in NYC and Florida

• Created a list of 137 PASC associated diagnoses and 459 medications based on literature review 
and expert clinical consultation 

• High-throughput causal inference pipeline using high-dimensional inverse propensity score 
adjustment to compare the new incidence of these codes in 57,616 SARS-CoV-2 infected patients 
from 31 days to 180 days after their acute infection compared with 503,136 controls 

• Included patients with at least one SARS-CoV-2 polymerase-chain-reaction (PCR) or antigen 
laboratory test between March 01, 2020, and November 30, 2021

• Studied a large population in New York City (14m) and Florida (17m)

To define Long COVID through Data-
driven High-throughput Analysis 

Objectives

Methods

"Data-driven analysis to understand long COVID using electronic health records from the 
RECOVER initiative." Nature Communications 14.1 (2023): 1948.

https://www.nature.com/articles/s41467-023-37653-z
https://www.nature.com/articles/s41467-023-37653-z


Leveraging EHR/RWD to Understand 
Long COVID
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Why different?
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Nature Communication 23
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Why different?

Nature Communication 23



• Characterize Long COVID through increased risk of new EHR diagnoses and medications in 
a SARS-CoV-2 patients compared with controls in NYC and Florida

• Created a list of 137 PASC associated diagnoses and 459 medications based on literature review 
and expert clinical consultation 

• High-throughput causal inference pipeline using high-dimensional inverse propensity score 
adjustment to compare the new incidence of these codes in 57,616 SARS-CoV-2 infected patients 
from 31 days to 180 days after their acute infection compared with 503,136 controls 

• Included patients with at least one SARS-CoV-2 polymerase-chain-reaction (PCR) or antigen 
laboratory test between March 01, 2020, and November 30, 2021

• Studied a large population in New York City (14m) and Florida (17m)

• Identified significantly higher incidence of conditions in multiple organ systems: 
respiratory, circulatory, musculoskeletal & connective tissue, neurological disorders, 
psychiatric, gastrointestinal, endocrine, metabolic, blood, genitourinary

• Higher burden of PASC in NYC compared with Florida

To define Long COVID through Data-
driven High-throughput Analysis 

Objectives

Methods

Results

"Data-driven analysis to understand long COVID using electronic health records from the 
RECOVER initiative." Nature Communications 14.1 (2023): 1948.

https://www.nature.com/articles/s41467-023-37653-z
https://www.nature.com/articles/s41467-023-37653-z


Conquer heterogeneity by Sub-
phenotyping Long COVID



• Utilize topic modeling to identify sub-phenotypes of Long COVID

• Mapped 137 newly incident diagnoses into 10 topics based on co-occurrence patterns in 34,605 
patients via Topic Modeling (Poisson Factor Analysis)

• Analyzed clustering of topics in patients to demonstrate four sub-phenotypes  
• Compared with matched controls (age, gender, race, ADI, exact match, others PS-match)

• Four sub-phenotypes characterized by:

1. Cardiac and renal (median age 65, 51% female, higher severity in acute phase)
2. Respiratory conditions, sleep disorders & anxiety (median age 51, 63% female, lowest rates 

of hospitalization) 
3. Musculoskeletal and nervous system (median age 57, 61% female)
4. Digestive system and respiratory conditions (median age 54, 62% female, lowest rates of ICU 

care)

Conquer heterogeneity by Sub-
phenotyping Long COVID

Objectives

Methods

Results

"Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes."
Nature Medicine 29.1 (2023): 226-235.

https://www.nature.com/articles/s41591-022-02116-3
https://www.nature.com/articles/s41591-022-02116-3


Nature Medicine 23



Nature Medicine 23



Nature Medicine 23

骨关节炎
脊椎病
肌肉骨骼痛
结缔组织病



Nature Medicine 23

腹部和盆腔疼痛
肠胃失调
食管疾病
胃炎和十二指肠炎
胃病
恶心和呕吐



Clinical implications:  

• RWD-driven defining diseases: new & complex

• PASC (or Long COVID) is clinically diverse 

• Incident conditions across different organ systems

• Geographic variation, may stem from temporal advancements in 
treatment or variants or different social demographics, etc.

• 4 identified sub-phenotypes 

• Cardiac and renal (median age 65, 51% female, higher severity in acute 
phase)

• Respiratory conditions, sleep disorders & anxiety (median age 51, 63% 
female, lowest rates of hospitalization) 

• Musculoskeletal and nervous system (median age 57, 61% female)

• Digestive system and respiratory conditions (median age 54, 62% female, 
lowest rates of ICU care)



1st Takeaway

•RWD/RWE might 
rapidly improve our 
understanding of and 
ability to predict, 
treat, and prevent 
Long COVID.
•A natural history to 
understand and fight 
against a new 
emerging disease.



Predict Treatment

Our ongoing efforts

Environmental Advances,
Research Square

https://www.sciencedirect.com/science/article/pii/S2666765723000121
https://assets.researchsquare.com/files/rs-2592194/v1/e76e04d9-f6de-402a-93a5-5a86fdf94880.pdf?c=1678286535


Increasing throughputs in generating 
RWE

opens a new door to understanding  
complex diseases

(𝑋𝑋,𝑇𝑇,𝑌𝑌𝑌? )
2nd Takeaway



a new door 
to

RWD-driven 
drug 

repurposing

(𝑋𝑋,𝑇𝑇,𝑌𝑌𝑌)(𝑋𝑋,𝑇𝑇𝑇? ,𝑌𝑌)

medRxiv

https://www.medrxiv.org/content/10.1101/2022.01.31.22270132v3


And, a new 
door to

RWD-driven
Trial designs or
Personalized/su

btyping 
treatment

(𝑋𝑋,𝑇𝑇,𝑌𝑌𝑌)(𝑋𝑋,𝑇𝑇𝑇,𝑌𝑌) (𝑋𝑋s? ,𝑇𝑇,𝑌𝑌)

Complex diseases:
ICU - Septic Shock

Chronic – AD
Long COVID



3rd Takeaway

A lot of details and 
considerations 

behind the scenes to 
make the generated 

evidence more 
robust and 

generalizable

• Which covariates should be 
included?

• Causal diagrams: 
Directed acyclic graph 
(DAG), 

• Clinical knowledge vs. 
data-driven

• Beyond confounding bias:
• Confounding by 

indication
• Residual confounding
• Prevalent-user bias
• Immortal time bias
• Missing data
• Misclassification
• Informative censoring
• Time-varying exposure
• Time-varying 

confounding

• Design:
• Trial designs
• Using the right 

comparators
• Active 

comparator?
• Different diseases

• PS-based methods
• Assumptions
• Why it works?
• Matching
• Re-weighting
• …
• Experiment design vs. outcome 

models

• Outcome models
• Meta learners
• Representation learning
• Causal forest
• Doubly robust estimator

• Time-varying exposures

• Evaluation:
• Balance diagnostics
• Model selection
• Cross-validation

• Multiple testing correction

• Simulation
• Statistical  complex high-

dimensional

• Sensitivity analysis
• Negative control
• …

• Generalizability
• Multiple sites
• Multiple data

• More applications:
• Drug repurposing?



More and More New Usage of 
RWD/RWE!

4th Takeaway



RWD-based Screening for Clinical Trial 
Recruitment

• Goal:
• Speed up clinical trials by RWD + AI

• High-throughput Screening Borderline 
Personality Disorder patients for Clinical Trial 
Recruitment (1402-0012) in Boehringer 
Ingelheim Pharmaceuticals, Inc. 

• Borderline Personality Disorder 
• A mental illness marked by an ongoing pattern of 

varying moods, unstable self-image, and 
behavior, suicidal behavior & self-harm, etc.

• Challenges: largely Under- or Mis-
diagnosed (w/o ICD-10 F60.3)

• Not covered by insurance; High rate of comorbid 
conditions; Negative stigma; Caring cost; No 
cures;

SciRep 2022

https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-000078-12/BG


RCTs using RWD

RWD is used to assess enrollment criteria, 
trial feasibility, recruitment, selection of 
sites, outcome identification, conduct RCT

Externally controlled trial
Single-group trial with external control 
group derived from RWD

Observational Study
Cohort study, case-control study, case-
crossover study, etc.
Define disease, incidence/prevalence, 
surveillance, risk factors, burden, etc.
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Trial emulation
Drug RWE (e.g., effectiveness in the 
long term, general population, e.g., covid 
vaccine), drug repurposing, comparative 
effectiveness, Post-market safety, 
effectiveness monitoring

Generate RWE using RWD in different study designs

Adapted from NEJM 386.18 (2022): 1680-1682.

https://www.nejm.org/doi/10.1056/NEJMp2200089?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed


Evidence-based 
medicine pyramid

https://www.nature.com/articles/s41591-022-02160-z/fig

FINAL CONCLUSIONS

RWD OFFERS EXCITING 
OPPORTUNITIES IN GENERATING 
POTENTIALLY MORE TIMELY/LESS 
EXPENSIVE/ETHICAL/GENERALIZABLE
/COMPREHENSIVE/INDIVIDUALIZED/
HIGH-THROUGHPUT EVIDENCE FOR A 
WIDE RANGE OF APPLICATIONS

DEEP SYNTHESIS AND INTEGRATION 
OF THESE DATA NEED INNOVATIONS 
IN METHODS, APPLICATIONS, 
SYSTEMS IMPLEMENTATION, AND 
INTERDISCIPLINARY MINDSETS

https://www.nature.com/articles/s41591-022-02160-z/figures/4
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